當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.save_images方法代碼示例

本文整理匯總了Python中utils.save_images方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.save_images方法的具體用法?Python utils.save_images怎麽用?Python utils.save_images使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.save_images方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def train(dataset, network, stat, sample_dir):
  initial_step = stat.get_t()
  logger.info("Training starts on epoch {}".format(initial_step))

  train_step_per_epoch = dataset.train.num_examples / conf.batch_size
  test_step_per_epoch = dataset.test.num_examples / conf.batch_size          

  for epoch in range(initial_step, conf.max_epoch):
    start_time = time.time()
    
    # 1. train
    total_train_costs = []        
    for _ in xrange(train_step_per_epoch):
      images = dataset.train.next_batch(conf.batch_size)
      cost = network.test(images, with_update=True)
      total_train_costs.append(cost)
    
    # 2. test        
    total_test_costs = []
    for _ in xrange(test_step_per_epoch):          
      images = dataset.test.next_batch(conf.batch_size)          
      cost = network.test(images, with_update=False)
      total_test_costs.append(cost)
      
    avg_train_cost, avg_test_cost = np.mean(total_train_costs), np.mean(total_test_costs)
    stat.on_step(avg_train_cost, avg_test_cost)
    
    # 3. generate samples
    images, _ = dataset.test.next_batch(conf.batch_size)
    samples, occluded = generate_from_occluded(network, images)
    util.save_images(np.concatenate((occluded, samples), axis=2), 
                dataset.height, dataset.width * 2, conf.num_generated_images, 1, 
                directory=sample_dir, prefix="epoch_%s" % epoch)
    
    logger.info("Epoch {}: {:.2f} seconds, avg train cost: {:.3f}, avg test cost: {:.3f}"
                .format(epoch,(time.time() - start_time), avg_train_cost, avg_test_cost)) 
開發者ID:jakebelew,項目名稱:gated-pixel-cnn,代碼行數:38,代碼來源:main.py

示例2: generate

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def generate(network, height, width, sample_dir):
      logger.info("Image generation starts")
      samples = network.generate()
      util.save_images(samples, height, width, 10, 10, directory=sample_dir) 
開發者ID:jakebelew,項目名稱:gated-pixel-cnn,代碼行數:6,代碼來源:main.py

示例3: make_sample_grid_and_save

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def make_sample_grid_and_save(est, dataset_name, dataset_parent_dir, grid_dims,
                              output_dir, cur_nimg):
  """Evaluate a fixed set of validation images and save output.

  Args:
    est: tf,estimator.Estimator, TF estimator to run the predictions.
    dataset_name: basename for the validation tfrecord from which to load
      validation images.
    dataset_parent_dir: path to a directory containing the validation tfrecord.
    grid_dims: 2-tuple int for the grid size (1 unit = 1 image).
    output_dir: string, where to save image samples.
    cur_nimg: int, current number of images seen by training.

  Returns:
    None.
  """
  num_examples = grid_dims[0] * grid_dims[1]
  def input_val_fn():
    dict_inp = data.provide_data(
        dataset_name=dataset_name, parent_dir=dataset_parent_dir, subset='val',
        batch_size=1, crop_flag=True, crop_size=opts.train_resolution,
        seeds=[0], max_examples=num_examples,
        use_appearance=opts.use_appearance, shuffle=0)
    x_in = dict_inp['conditional_input']
    x_gt = dict_inp['expected_output']  # ground truth output
    x_app = dict_inp['peek_input']
    return x_in, x_gt, x_app

  def est_input_val_fn():
    x_in, _, x_app = input_val_fn()
    features = {'conditional_input': x_in, 'peek_input': x_app}
    return features

  images = [x for x in est.predict(est_input_val_fn)]
  images = np.array(images, 'f')
  images = images.reshape(grid_dims + images.shape[1:])
  utils.save_images(utils.to_png(utils.images_to_grid(images)), output_dir,
                    cur_nimg) 
開發者ID:google,項目名稱:neural_rerendering_in_the_wild,代碼行數:40,代碼來源:neural_rerendering.py

示例4: visualize_results

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def visualize_results(self, epoch, fix=True):
        self.G.eval()

        if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):
            os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)

        tot_num_samples = min(self.sample_num, self.batch_size)
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))

        if fix:
            """ fixed noise """
            samples = self.G(self.sample_z_)
        else:
            """ random noise """
            if self.gpu_mode:
                sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
            else:
                sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)

            samples = self.G(sample_z_)

        if self.gpu_mode:
            samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
        else:
            samples = samples.data.numpy().transpose(0, 2, 3, 1)

        utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                          self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png') 
開發者ID:tangzhenyu,項目名稱:Generative_Model_Zoo,代碼行數:30,代碼來源:EBGAN.py

示例5: visualize_results

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def visualize_results(self, epoch):
        self.G.eval()

        if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):
            os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)

        image_frame_dim = int(np.floor(np.sqrt(self.sample_num)))

        """ style by class """
        samples = self.G(self.sample_z_, self.sample_c_, self.sample_y_)
        if self.gpu_mode:
            samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
        else:
            samples = samples.data.numpy().transpose(0, 2, 3, 1)

        utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                          self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png')

        """ manipulating two continous codes """
        samples = self.G(self.sample_z2_, self.sample_c2_, self.sample_y2_)
        if self.gpu_mode:
            samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
        else:
            samples = samples.data.numpy().transpose(0, 2, 3, 1)

        utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                          self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_cont_epoch%03d' % epoch + '.png') 
開發者ID:tangzhenyu,項目名稱:Generative_Model_Zoo,代碼行數:29,代碼來源:infoGAN.py

示例6: visualize_results

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def visualize_results(self, epoch, fix=True):
        self.G.eval()

        if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):
            os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)

        image_frame_dim = int(np.floor(np.sqrt(self.sample_num)))

        if fix:
            """ fixed noise """
            samples = self.G(self.sample_z_, self.sample_y_)
        else:
            """ random noise """
            temp = torch.LongTensor(self.batch_size, 1).random_() % 10
            sample_y_ = torch.FloatTensor(self.batch_size, 10)
            sample_y_.zero_()
            sample_y_.scatter_(1, temp, 1)
            if self.gpu_mode:
                sample_z_, sample_y_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True), \
                                       Variable(sample_y_.cuda(), volatile=True)
            else:
                sample_z_, sample_y_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True), \
                                       Variable(sample_y_, volatile=True)

            samples = self.G(sample_z_, sample_y_)

        if self.gpu_mode:
            samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
        else:
            samples = samples.data.numpy().transpose(0, 2, 3, 1)

        utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                          self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png') 
開發者ID:tangzhenyu,項目名稱:Generative_Model_Zoo,代碼行數:35,代碼來源:CGAN.py

示例7: visualize_results

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def visualize_results(self, epoch, fix=True):
        self.G.eval()

        if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):
            os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)

        tot_num_samples = min(self.sample_num, self.batch_size)
        image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))

        if fix:
            """ fixed noise """
            samples = self.G(self.sample_z_)
        else:
            """ random noise """
            if self.gpu_mode:
                sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
            else:
                sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)

            samples = self.G(sample_z_)

        if self.gpu_mode:
            samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
        else:
            samples = samples.data.numpy().transpose(0, 2, 3, 1)

        utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                    self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png') 
開發者ID:tangzhenyu,項目名稱:Generative_Model_Zoo,代碼行數:30,代碼來源:DRAGAN.py

示例8: visualize_results

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def visualize_results(self, epoch, fix=True):
        if not self.result_path.exists():
            self.result_path.mkdir()

        self.G.eval()

        # test_data_loader
        original_, sketch_, iv_tag_, cv_tag_ = self.test_images
        image_frame_dim = int(np.ceil(np.sqrt(len(original_))))

        # iv_tag_ to feature tensor 16 * 16 * 256 by pre-reained Sketch.
        with torch.no_grad():
            feature_tensor = self.Pretrain_ResNeXT(sketch_)
            
            if self.gpu_mode:
                original_, sketch_, iv_tag_, cv_tag_, feature_tensor = original_.to(self.device), sketch_.to(self.device), iv_tag_.to(self.device), cv_tag_.to(self.device), feature_tensor.to(self.device)

            G_f, G_g = self.G(sketch_, feature_tensor, cv_tag_)

            if self.gpu_mode:
                G_f = G_f.cpu()
                G_g = G_g.cpu()

            G_f = self.color_revert(G_f)
            G_g = self.color_revert(G_g)

        utils.save_images(G_f[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                          self.result_path / 'tag2pix_epoch{:03d}_G_f.png'.format(epoch))
        utils.save_images(G_g[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                          self.result_path / 'tag2pix_epoch{:03d}_G_g.png'.format(epoch)) 
開發者ID:blandocs,項目名稱:Tag2Pix,代碼行數:32,代碼來源:tag2pix.py

示例9: get_test_data

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def get_test_data(self, test_data_loader, count):
        test_count = 0
        original_, sketch_, iv_tag_, cv_tag_ = [], [], [], []
        for orig, sket, ivt, cvt in test_data_loader:
            original_.append(orig)
            sketch_.append(sket)
            iv_tag_.append(ivt)
            cv_tag_.append(cvt)

            test_count += len(orig)
            if test_count >= count:
                break

        original_ = torch.cat(original_, 0)
        sketch_ = torch.cat(sketch_, 0)
        iv_tag_ = torch.cat(iv_tag_, 0)
        cv_tag_ = torch.cat(cv_tag_, 0)
        
        self.save_tag_tensor_name(iv_tag_, cv_tag_, self.result_path / "test_image_tags.txt")

        image_frame_dim = int(np.ceil(np.sqrt(len(original_))))

        if self.gpu_mode:
            original_ = original_.cpu()
        sketch_np = sketch_.data.numpy().transpose(0, 2, 3, 1)
        original_np = self.color_revert(original_)

        utils.save_images(original_np[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                        self.result_path / 'tag2pix_original.png')
        utils.save_images(sketch_np[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
                        self.result_path / 'tag2pix_sketch.png')

        return original_, sketch_, iv_tag_, cv_tag_ 
開發者ID:blandocs,項目名稱:Tag2Pix,代碼行數:35,代碼來源:tag2pix.py

示例10: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_images [as 別名]
def main():
    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    parser = argparse.ArgumentParser(description='Test trained models')
    parser.add_argument('--options-file', '-o', default='options-and-config.pickle', type=str,
                        help='The file where the simulation options are stored.')
    parser.add_argument('--checkpoint-file', '-c', required=True, type=str, help='Model checkpoint file')
    parser.add_argument('--batch-size', '-b', default=12, type=int, help='The batch size.')
    parser.add_argument('--source-image', '-s', required=True, type=str,
                        help='The image to watermark')
    # parser.add_argument('--times', '-t', default=10, type=int,
    #                     help='Number iterations (insert watermark->extract).')

    args = parser.parse_args()

    train_options, hidden_config, noise_config = utils.load_options(args.options_file)
    noiser = Noiser(noise_config)

    checkpoint = torch.load(args.checkpoint_file)
    hidden_net = Hidden(hidden_config, device, noiser, None)
    utils.model_from_checkpoint(hidden_net, checkpoint)


    image_pil = Image.open(args.source_image)
    image = randomCrop(np.array(image_pil), hidden_config.H, hidden_config.W)
    image_tensor = TF.to_tensor(image).to(device)
    image_tensor = image_tensor * 2 - 1  # transform from [0, 1] to [-1, 1]
    image_tensor.unsqueeze_(0)

    # for t in range(args.times):
    message = torch.Tensor(np.random.choice([0, 1], (image_tensor.shape[0],
                                                    hidden_config.message_length))).to(device)
    losses, (encoded_images, noised_images, decoded_messages) = hidden_net.validate_on_batch([image_tensor, message])
    decoded_rounded = decoded_messages.detach().cpu().numpy().round().clip(0, 1)
    message_detached = message.detach().cpu().numpy()
    print('original: {}'.format(message_detached))
    print('decoded : {}'.format(decoded_rounded))
    print('error : {:.3f}'.format(np.mean(np.abs(decoded_rounded - message_detached))))
    utils.save_images(image_tensor.cpu(), encoded_images.cpu(), 'test', '.', resize_to=(256, 256))

    # bitwise_avg_err = np.sum(np.abs(decoded_rounded - message.detach().cpu().numpy()))/(image_tensor.shape[0] * messages.shape[1]) 
開發者ID:ando-khachatryan,項目名稱:HiDDeN,代碼行數:46,代碼來源:test_model.py


注:本文中的utils.save_images方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。