當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.save_image方法代碼示例

本文整理匯總了Python中utils.save_image方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.save_image方法的具體用法?Python utils.save_image怎麽用?Python utils.save_image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.save_image方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: start_camera

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def start_camera(camera, folder, interval, until=None):
    """
    Start taking pictures every interval.
    If until is specified, it will take pictures
    until that time is reached (24h format).
    Needs to be of the following format: HH:MM
    """
    utils.clear_directory(folder)
    number = 0

    while True:
        _, image = camera.read()
        now = datetime.datetime.now()

        number += 1
        print 'Taking picture number %d at %s' % (number, now.isoformat())
        utils.save_image(image, folder, now)

        if utils.time_over(until, now):
            break

        time.sleep(interval)

    del(camera) 
開發者ID:Keats,項目名稱:rodent,代碼行數:26,代碼來源:rodent.py

示例2: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def main():
    parser = build_parser()
    options = parser.parse_args()
    check_opts(options)

    network = options.network_path
    if not os.path.isdir(network):
        parser.error("Network %s does not exist." % network)

    content_image = utils.load_image(options.content)
    reshaped_content_height = (content_image.shape[0] - content_image.shape[0] % 4)
    reshaped_content_width = (content_image.shape[1] - content_image.shape[1] % 4)
    reshaped_content_image = content_image[:reshaped_content_height, :reshaped_content_width, :]
    reshaped_content_image = np.ndarray.reshape(reshaped_content_image, (1,) + reshaped_content_image.shape)

    prediction = ffwd(reshaped_content_image, network)
    utils.save_image(prediction, options.output_path) 
開發者ID:ShafeenTejani,項目名稱:fast-style-transfer,代碼行數:19,代碼來源:stylize_image.py

示例3: write_disk_grid

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def write_disk_grid(global_step, summary_freq, log_dir, input_images,
                    output_images, pred_images, pred_masks):
  """Function called by TF to save the prediction periodically."""

  def write_grid(grid, global_step):
    """Native python function to call for writing images to files."""
    if global_step % summary_freq == 0:
      img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
      utils.save_image(grid, img_path)
    return 0

  grid = _build_image_grid(input_images, output_images, pred_images, pred_masks)
  slim.summaries.add_image_summary(
      tf.expand_dims(grid, axis=0), name='grid_vis')
  save_op = tf.py_func(write_grid, [grid, global_step], [tf.int64],
                       'write_grid')[0]
  return save_op 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:19,代碼來源:model_rotator.py

示例4: stylize

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def stylize(args):
    device = torch.device("cuda" if args.cuda else "cpu")

    content_image = utils.load_image(args.content_image, scale=args.content_scale)
    content_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    content_image = content_transform(content_image)
    content_image = content_image.unsqueeze(0).to(device)


    with torch.no_grad():
        style_model = TransformerNet(style_num=args.style_num)
        state_dict = torch.load(args.model)
        style_model.load_state_dict(state_dict)
        style_model.to(device)
        output = style_model(content_image, style_id = [args.style_id]).cpu()

    utils.save_image('output/'+args.output_image+'_style'+str(args.style_id)+'.jpg', output[0]) 
開發者ID:kewellcjj,項目名稱:pytorch-multiple-style-transfer,代碼行數:22,代碼來源:neural_style.py

示例5: motion_detection

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def motion_detection(camera, folder, until):
    """
    Uses 3 frames to look for motion, can't remember where
    I found it but it gives better result than my first try
    with comparing 2 frames.
    """
    utils.clear_directory(folder)

    # Need to get 2 images to start with
    previous_image = cv2.cvtColor(camera.read()[1], cv2.cv.CV_RGB2GRAY)
    current_image = cv2.cvtColor(camera.read()[1], cv2.cv.CV_RGB2GRAY)
    purple = (140, 25, 71)

    while True:
        now = datetime.datetime.now()
        _, image = camera.read()
        gray_image = cv2.cvtColor(image, cv2.cv.CV_RGB2GRAY)

        difference1 = cv2.absdiff(previous_image, gray_image)
        difference2 = cv2.absdiff(current_image, gray_image)
        result = cv2.bitwise_and(difference1, difference2)

        # Basic threshold, turn the bitwise_and into a black or white (haha)
        # result, white (255) being a motion
        _, result = cv2.threshold(result, 40, 255, cv2.THRESH_BINARY)

        # Let's show a square around the detected motion in the original pic
        low_point, high_point = utils.find_motion_boundaries(result.tolist())
        if low_point is not None and high_point is not None:
            cv2.rectangle(image, low_point, high_point, purple, 3)
            print 'Motion detected ! Taking picture'
            utils.save_image(image, folder, now)

        previous_image = current_image
        current_image = gray_image

        if utils.time_over(until, now):
            break

    del(camera) 
開發者ID:Keats,項目名稱:rodent,代碼行數:42,代碼來源:rodent.py

示例6: generate

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def generate():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--gen', type=str, default=None)
    parser.add_argument('--depth', '-d', type=int, default=0)
    parser.add_argument('--out', '-o', type=str, default='img/')
    parser.add_argument('--num', '-n', type=int, default=10)
    args = parser.parse_args()
    
    gen = network.Generator(depth=args.depth)
    print('loading generator model from ' + args.gen)
    serializers.load_npz(args.gen, gen)

    if args.gpu >= 0:
        cuda.get_device_from_id(0).use()
        gen.to_gpu()

    xp = gen.xp
        
    z1 = gen.z(1)
    z2 = gen.z(1)

    for i in range(args.num):
        print(i)
        p = i / (args.num-1)
        z = z1 * p + z2 * (1 - p)
        x = gen(z, alpha=1.0)
        x = chainer.cuda.to_cpu(x.data)
        
        img = x[0].copy()
        filename = os.path.join(args.out, 'gen_%04d.png'%i)
        utils.save_image(img, filename) 
開發者ID:joisino,項目名稱:chainer-PGGAN,代碼行數:34,代碼來源:analogy.py

示例7: write_disk_grid

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def write_disk_grid(self,
                      global_step,
                      log_dir,
                      input_images,
                      gt_projs,
                      pred_projs,
                      input_voxels=None,
                      output_voxels=None):
    """Function called by TF to save the prediction periodically."""
    summary_freq = self._params.save_every

    def write_grid(input_images, gt_projs, pred_projs, global_step,
                   input_voxels, output_voxels):
      """Native python function to call for writing images to files."""
      grid = _build_image_grid(
          input_images,
          gt_projs,
          pred_projs,
          input_voxels=input_voxels,
          output_voxels=output_voxels)

      if global_step % summary_freq == 0:
        img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
        utils.save_image(grid, img_path)
      return grid

    save_op = tf.py_func(write_grid, [
        input_images, gt_projs, pred_projs, global_step, input_voxels,
        output_voxels
    ], [tf.uint8], 'write_grid')[0]
    slim.summaries.add_image_summary(
        tf.expand_dims(save_op, axis=0), name='grid_vis')
    return save_op 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:35,代碼來源:model_ptn.py

示例8: write_disk_grid

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def write_disk_grid(self,
                      global_step,
                      log_dir,
                      input_images,
                      gt_projs,
                      pred_projs,
                      pred_voxels=None):
    """Function called by TF to save the prediction periodically."""
    summary_freq = self._params.save_every

    def write_grid(input_images, gt_projs, pred_projs, pred_voxels,
                   global_step):
      """Native python function to call for writing images to files."""
      grid = _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels)

      if global_step % summary_freq == 0:
        img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
        utils.save_image(grid, img_path)
        with open(
            os.path.join(log_dir, 'pred_voxels_%s' % str(global_step)),
            'w') as fout:
          np.save(fout, pred_voxels)
        with open(
            os.path.join(log_dir, 'input_images_%s' % str(global_step)),
            'w') as fout:
          np.save(fout, input_images)

      return grid

    py_func_args = [
        input_images, gt_projs, pred_projs, pred_voxels, global_step
    ]
    save_grid_op = tf.py_func(write_grid, py_func_args, [tf.uint8],
                              'wrtie_grid')[0]
    slim.summaries.add_image_summary(
        tf.expand_dims(save_grid_op, axis=0), name='grid_vis')
    return save_grid_op 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:39,代碼來源:model_voxel_generation.py

示例9: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def main():

    # parse arguments
    args = parse_args()
    if args is None:
        exit()

    # load content image
    content_image = utils.load_image(args.content, max_size=args.max_size)

    # open session
    soft_config = tf.ConfigProto(allow_soft_placement=True)
    soft_config.gpu_options.allow_growth = True # to deal with large image
    sess = tf.Session(config=soft_config)

    # build the graph
    transformer = style_transfer_tester.StyleTransferTester(session=sess,
                                                            model_path=args.style_model,
                                                            content_image=content_image,
                                                            )
    # execute the graph
    start_time = time.time()
    output_image = transformer.test()
    end_time = time.time()

    # save result
    utils.save_image(output_image, args.output)

    # report execution time
    shape = content_image.shape #(batch, width, height, channel)
    print('Execution time for a %d x %d image : %f msec' % (shape[0], shape[1], 1000.*float(end_time - start_time)/60)) 
開發者ID:hwalsuklee,項目名稱:tensorflow-fast-style-transfer,代碼行數:33,代碼來源:run_test.py

示例10: stylize

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def stylize(args):
    device = torch.device("cuda" if args.cuda else "cpu")

    content_image = utils.load_image(args.content_image, scale=args.content_scale)
    content_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    content_image = content_transform(content_image)
    content_image = content_image.unsqueeze(0).to(device)

    if args.model.endswith(".onnx"):
        output = stylize_onnx_caffe2(content_image, args)
    else:
        with torch.no_grad():
            style_model = TransformerNet()
            state_dict = torch.load(args.model)
            # remove saved deprecated running_* keys in InstanceNorm from the checkpoint
            for k in list(state_dict.keys()):
                if re.search(r'in\d+\.running_(mean|var)$', k):
                    del state_dict[k]
            style_model.load_state_dict(state_dict)
            style_model.to(device)
            if args.export_onnx:
                assert args.export_onnx.endswith(".onnx"), "Export model file should end with .onnx"
                output = torch.onnx._export(style_model, content_image, args.export_onnx).cpu()
            else:
                output = style_model(content_image).cpu()
    utils.save_image(args.output_image, output[0]) 
開發者ID:pytorch,項目名稱:examples,代碼行數:31,代碼來源:neural_style.py

示例11: save_images

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def save_images(img_dir, img_idx, file_suffix, inp_dict):
  his_imgs = utils.flatten_img_seq(inp_dict['his_imgs'])
  fut_imgs = utils.flatten_img_seq(inp_dict['fut_imgs'])
  #
  if file_suffix == 'gt':
    utils.save_image(his_imgs, os.path.join(img_dir, '%02d_%s_his_poses.png' % (img_idx, file_suffix)))
  utils.save_image(fut_imgs, os.path.join(img_dir, '%02d_%s_fut_poses.png' % (img_idx, file_suffix))) 
開發者ID:xcyan,項目名稱:eccv18_mtvae,代碼行數:9,代碼來源:h36m_gensample.py

示例12: save_images

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def save_images(img_dir, img_idx, file_suffix, inp_dict):
  A_imgs = utils.flatten_img_seq(inp_dict['A_imgs'])
  B_imgs = utils.flatten_img_seq(inp_dict['B_imgs'])
  C_imgs = utils.flatten_img_seq(inp_dict['C_imgs'])
  predD_imgs = utils.flatten_img_seq(inp_dict['predD_imgs'])
  sub_name = '%02d_%s' % (img_idx, file_suffix)
  utils.save_image(A_imgs, os.path.join(img_dir, '%s_A.png' % sub_name))
  utils.save_image(B_imgs, os.path.join(img_dir, '%s_B.png' % sub_name))
  utils.save_image(C_imgs, os.path.join(img_dir, '%s_C.png' % sub_name))
  utils.save_image(predD_imgs, os.path.join(img_dir, '%s_predD.png' % sub_name)) 
開發者ID:xcyan,項目名稱:eccv18_mtvae,代碼行數:12,代碼來源:h36m_analogy.py

示例13: stylize

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def stylize(args):
    device = torch.device("cuda" if args.cuda else "cpu")

    content_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))])

    content_image = utils.load_image(args.content_image, scale=args.content_scale)
    content_image = content_transform(content_image)
    content_image = content_image.unsqueeze(0).to(device)

    with torch.no_grad():
        style_model = torch.load(args.model)
        style_model.to(device)
        output = style_model(content_image).cpu()
        utils.save_image(args.output_image, output[0]) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:16,代碼來源:neural_style.py

示例14: loop_body_patch

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import save_image [as 別名]
def loop_body_patch(it, ckpt_path, depth_in, depth_ref, color, mask, config):
    """
    :param depth_ref: unused yet. offline quantitative evaluation of depth_dt. 
    """
    print(time.ctime())
    print("Load checkpoint: {}".format(ckpt_path))

    h, w = depth_in.shape[:2]
    low_thres = config.low_thres
    up_thres = config.up_thres
    thres_range = (up_thres - low_thres) / 2.0

    params = build_model(h, w, config)
    # ckpt_step = ckpt_path.split("/")[-1]

    sess = tf.Session()
    load_from_checkpoint(sess, ckpt_path)

    depth_dn_im, depth_dt_im = sess.run([params["depth_dn"], params["depth_dt"]],
                                        feed_dict={params["depth_in"]: depth_in.reshape(1, h, w, 1),
                                                   params["color"]: color.reshape(1, h, w, 1),
                                                   params["is_training"]: False})

    depth_dn_im = (((depth_dn_im + 1.0) * thres_range + low_thres) * mask).astype(np.uint16)
    depth_dt_im = (((depth_dt_im + 1.0) * thres_range + low_thres) * mask).astype(np.uint16)

    utils.save_image(depth_dn_im, config.sample_dir, "frame_{}_dn.png".format(it))
    utils.save_image(depth_dt_im, config.sample_dir, "frame_{}_dt.png".format(it))

    tf.reset_default_graph()
    print("saving img {}.".format(it)) 
開發者ID:neycyanshi,項目名稱:DDRNet,代碼行數:33,代碼來源:evaluate.py


注:本文中的utils.save_image方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。