當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.progress_bar方法代碼示例

本文整理匯總了Python中utils.progress_bar方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.progress_bar方法的具體用法?Python utils.progress_bar怎麽用?Python utils.progress_bar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.progress_bar方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def __init__(self, obj):
        threading.Thread.__init__(self)
        self.obj = obj
        self.progress_bar = obj.progress_bar
        self.logger = obj.logger
        self.shared_var = obj.shared_var

        self.dl_speed = 0
        self.eta = 0
        self.lastBytesSamples = [] # list with last 50 Bytes Samples.
        self.last_calculated_totalBytes = 0
        self.calcETA_queue = []
        self.calcETA_i = 0
        self.calcETA_val = 0
        self.dl_time = -1.0

        self.daemon = True
        self.start() 
開發者ID:KanoComputing,項目名稱:kano-burners,代碼行數:20,代碼來源:pySmartDL.py

示例2: get_progress_bar

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def get_progress_bar(self, length=20):
        '''
        Returns the current progress of the download as a string containing a progress bar.

        .. NOTE::
            That's an alias for pySmartDL.utils.progress_bar(obj.get_progress()).

        :param length: The length of the progress bar in chars. Default is 20.
        :type length: int
        :rtype: string
        '''
        return utils.progress_bar(self.get_progress(), length) 
開發者ID:KanoComputing,項目名稱:kano-burners,代碼行數:14,代碼來源:pySmartDL.py

示例3: run

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def run(self):
        t1 = time.time()

        while not self.obj.pool.done():
            self.dl_speed = self.calcDownloadSpeed(self.shared_var.value)
            if self.dl_speed > 0:
                self.eta = self.calcETA((self.obj.filesize-self.shared_var.value)/self.dl_speed)

            if self.progress_bar:
                if self.obj.filesize:
                    status = r"[*] %s / %s @ %s/s %s [%3.1f%%, %s left]   " % (utils.sizeof_human(self.shared_var.value), utils.sizeof_human(self.obj.filesize), utils.sizeof_human(self.dl_speed), utils.progress_bar(1.0*self.shared_var.value/self.obj.filesize), self.shared_var.value * 100.0 / self.obj.filesize, utils.time_human(self.eta, fmt_short=True))
                else:
                    status = r"[*] %s / ??? MB @ %s/s   " % (utils.sizeof_human(self.shared_var.value), utils.sizeof_human(self.dl_speed))
                status = status + chr(8)*(len(status)+1)
                print status,

            time.sleep(0.1)

        if self.obj._killed:
            self.logger.debug("File download process has been stopped.")
            return

        if self.progress_bar:
            if self.obj.filesize:
                print r"[*] %s / %s @ %s/s %s [100%%, 0s left]    " % (utils.sizeof_human(self.obj.filesize), utils.sizeof_human(self.obj.filesize), utils.sizeof_human(self.dl_speed), utils.progress_bar(1.0))
            else:
                print r"[*] %s / %s @ %s/s    " % (utils.sizeof_human(self.shared_var.value), self.shared_var.value / 1024.0**2, utils.sizeof_human(self.dl_speed))

        t2 = time.time()
        self.dl_time = float(t2-t1)

        while self.obj.post_threadpool_thread.is_alive():
            time.sleep(0.1)

        self.obj.pool.shutdown()
        self.obj.status = "finished"
        if not self.obj.errors:
            self.logger.debug("File downloaded within %.2f seconds." % self.dl_time) 
開發者ID:KanoComputing,項目名稱:kano-burners,代碼行數:40,代碼來源:pySmartDL.py

示例4: train

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def train(epoch):
    print('\nEpoch: %d' % epoch)
    global Train_acc
    net.train()
    train_loss = 0
    correct = 0
    total = 0

    if epoch > learning_rate_decay_start and learning_rate_decay_start >= 0:
        frac = (epoch - learning_rate_decay_start) // learning_rate_decay_every
        decay_factor = learning_rate_decay_rate ** frac
        current_lr = opt.lr * decay_factor
        utils.set_lr(optimizer, current_lr)  # set the decayed rate
    else:
        current_lr = opt.lr
    print('learning_rate: %s' % str(current_lr))

    for batch_idx, (inputs, targets) in enumerate(trainloader):
        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        optimizer.zero_grad()
        inputs, targets = Variable(inputs), Variable(targets)
        outputs = net(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        utils.clip_gradient(optimizer, 0.1)
        optimizer.step()
        train_loss += loss.data[0]
        _, predicted = torch.max(outputs.data, 1)
        total += targets.size(0)
        correct += predicted.eq(targets.data).cpu().sum()

        utils.progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
            % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))

    Train_acc = 100.*correct/total 
開發者ID:WuJie1010,項目名稱:Facial-Expression-Recognition.Pytorch,代碼行數:38,代碼來源:mainpro_FER.py

示例5: PublicTest

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def PublicTest(epoch):
    global PublicTest_acc
    global best_PublicTest_acc
    global best_PublicTest_acc_epoch
    net.eval()
    PublicTest_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(PublicTestloader):
        bs, ncrops, c, h, w = np.shape(inputs)
        inputs = inputs.view(-1, c, h, w)
        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = Variable(inputs, volatile=True), Variable(targets)
        outputs = net(inputs)
        outputs_avg = outputs.view(bs, ncrops, -1).mean(1)  # avg over crops
        loss = criterion(outputs_avg, targets)
        PublicTest_loss += loss.data[0]
        _, predicted = torch.max(outputs_avg.data, 1)
        total += targets.size(0)
        correct += predicted.eq(targets.data).cpu().sum()

        utils.progress_bar(batch_idx, len(PublicTestloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
                           % (PublicTest_loss / (batch_idx + 1), 100. * correct / total, correct, total))

    # Save checkpoint.
    PublicTest_acc = 100.*correct/total
    if PublicTest_acc > best_PublicTest_acc:
        print('Saving..')
        print("best_PublicTest_acc: %0.3f" % PublicTest_acc)
        state = {
            'net': net.state_dict() if use_cuda else net,
            'acc': PublicTest_acc,
            'epoch': epoch,
        }
        if not os.path.isdir(path):
            os.mkdir(path)
        torch.save(state, os.path.join(path,'PublicTest_model.t7'))
        best_PublicTest_acc = PublicTest_acc
        best_PublicTest_acc_epoch = epoch 
開發者ID:WuJie1010,項目名稱:Facial-Expression-Recognition.Pytorch,代碼行數:42,代碼來源:mainpro_FER.py

示例6: train

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def train(epoch):
    print('\nEpoch: %d' % epoch)
    global Train_acc
    net.train()
    train_loss = 0
    correct = 0
    total = 0

    if epoch > learning_rate_decay_start and learning_rate_decay_start >= 0:
        frac = (epoch - learning_rate_decay_start) // learning_rate_decay_every
        decay_factor = learning_rate_decay_rate ** frac
        current_lr = opt.lr * decay_factor
        utils.set_lr(optimizer, current_lr)  # set the decayed rate
    else:
        current_lr = opt.lr
    print('learning_rate: %s' % str(current_lr))


    for batch_idx, (inputs, targets) in enumerate(trainloader):
        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        optimizer.zero_grad()
        inputs, targets = Variable(inputs), Variable(targets)
        outputs = net(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        utils.clip_gradient(optimizer, 0.1)
        optimizer.step()

        train_loss += loss.data[0]
        _, predicted = torch.max(outputs.data, 1)
        total += targets.size(0)
        correct += predicted.eq(targets.data).cpu().sum()

        utils.progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
            % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))

    Train_acc = 100.*correct/total 
開發者ID:WuJie1010,項目名稱:Facial-Expression-Recognition.Pytorch,代碼行數:40,代碼來源:mainpro_CK+.py

示例7: eval_model

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def eval_model(model, data, params):

    model.eval()
    reference, candidate, source, alignments = [], [], [], []
    count, total_count = 0, len(data['validset'])
    validloader = data['validloader']
    tgt_vocab = data['tgt_vocab']


    for src, tgt, src_len, tgt_len, original_src, original_tgt in validloader:

        if config.use_cuda:
            src = src.cuda()
            src_len = src_len.cuda()

        with torch.no_grad():
            if config.beam_size > 1:
                samples, alignment, weight = model.beam_sample(src, src_len, beam_size=config.beam_size, eval_=True)
            else:
                samples, alignment = model.sample(src, src_len)

        candidate += [tgt_vocab.convertToLabels(s, utils.EOS) for s in samples]
        source += original_src
        reference += original_tgt
        if alignment is not None:
            alignments += [align for align in alignment]

        count += len(original_src)
        utils.progress_bar(count, total_count)

    if config.unk and config.attention != 'None':
        cands = []
        for s, c, align in zip(source, candidate, alignments):
            cand = []
            for word, idx in zip(c, align):
                if word == utils.UNK_WORD and idx < len(s):
                    try:
                        cand.append(s[idx])
                    except:
                        cand.append(word)
                        print("%d %d\n" % (len(s), idx))
                else:
                    cand.append(word)
            cands.append(cand)
            if len(cand) == 0:
                print('Error!')
        candidate = cands

    with codecs.open(params['log_path']+'candidate.txt','w+','utf-8') as f:
        for i in range(len(candidate)):
            f.write(" ".join(candidate[i])+'\n')

    score = {}
    for metric in config.metrics:
        score[metric] = getattr(utils, metric)(reference, candidate, params['log_path'], params['log'], config)

    return score 
開發者ID:lancopku,項目名稱:Global-Encoding,代碼行數:59,代碼來源:train.py

示例8: PrivateTest

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def PrivateTest(epoch):
    global PrivateTest_acc
    global best_PrivateTest_acc
    global best_PrivateTest_acc_epoch
    net.eval()
    PrivateTest_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(PrivateTestloader):
        bs, ncrops, c, h, w = np.shape(inputs)
        inputs = inputs.view(-1, c, h, w)
        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = Variable(inputs, volatile=True), Variable(targets)
        outputs = net(inputs)
        outputs_avg = outputs.view(bs, ncrops, -1).mean(1)  # avg over crops
        loss = criterion(outputs_avg, targets)
        PrivateTest_loss += loss.data[0]
        _, predicted = torch.max(outputs_avg.data, 1)
        total += targets.size(0)
        correct += predicted.eq(targets.data).cpu().sum()

        utils.progress_bar(batch_idx, len(PublicTestloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
            % (PrivateTest_loss / (batch_idx + 1), 100. * correct / total, correct, total))
    # Save checkpoint.
    PrivateTest_acc = 100.*correct/total

    if PrivateTest_acc > best_PrivateTest_acc:
        print('Saving..')
        print("best_PrivateTest_acc: %0.3f" % PrivateTest_acc)
        state = {
            'net': net.state_dict() if use_cuda else net,
	        'best_PublicTest_acc': best_PublicTest_acc,
            'best_PrivateTest_acc': PrivateTest_acc,
    	    'best_PublicTest_acc_epoch': best_PublicTest_acc_epoch,
            'best_PrivateTest_acc_epoch': epoch,
        }
        if not os.path.isdir(path):
            os.mkdir(path)
        torch.save(state, os.path.join(path,'PrivateTest_model.t7'))
        best_PrivateTest_acc = PrivateTest_acc
        best_PrivateTest_acc_epoch = epoch 
開發者ID:WuJie1010,項目名稱:Facial-Expression-Recognition.Pytorch,代碼行數:44,代碼來源:mainpro_FER.py

示例9: test

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import progress_bar [as 別名]
def test(epoch):
    global Test_acc
    global best_Test_acc
    global best_Test_acc_epoch
    net.eval()
    PrivateTest_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(testloader):
        bs, ncrops, c, h, w = np.shape(inputs)
        inputs = inputs.view(-1, c, h, w)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = Variable(inputs, volatile=True), Variable(targets)
        outputs = net(inputs)
        outputs_avg = outputs.view(bs, ncrops, -1).mean(1)  # avg over crops

        loss = criterion(outputs_avg, targets)
        PrivateTest_loss += loss.data[0]
        _, predicted = torch.max(outputs_avg.data, 1)
        total += targets.size(0)
        correct += predicted.eq(targets.data).cpu().sum()

        utils.progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
            % (PrivateTest_loss / (batch_idx + 1), 100. * correct / total, correct, total))
    # Save checkpoint.
    Test_acc = 100.*correct/total

    if Test_acc > best_Test_acc:
        print('Saving..')
        print("best_Test_acc: %0.3f" % Test_acc)
        state = {'net': net.state_dict() if use_cuda else net,
            'best_Test_acc': Test_acc,
            'best_Test_acc_epoch': epoch,
        }
        if not os.path.isdir(opt.dataset + '_' + opt.model):
            os.mkdir(opt.dataset + '_' + opt.model)
        if not os.path.isdir(path):
            os.mkdir(path)
        torch.save(state, os.path.join(path, 'Test_model.t7'))
        best_Test_acc = Test_acc
        best_Test_acc_epoch = epoch 
開發者ID:WuJie1010,項目名稱:Facial-Expression-Recognition.Pytorch,代碼行數:45,代碼來源:mainpro_CK+.py


注:本文中的utils.progress_bar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。