本文整理匯總了Python中utils.print_network方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.print_network方法的具體用法?Python utils.print_network怎麽用?Python utils.print_network使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils
的用法示例。
在下文中一共展示了utils.print_network方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, test_dataloader):
self.test_dataloader = test_dataloader
self.logger = logging.getLogger("Logger")
self.model_config = CONFIG.model
self.test_config = CONFIG.test
self.log_config = CONFIG.log
self.data_config = CONFIG.data
self.build_model()
self.resume_step = None
utils.print_network(self.G, CONFIG.version)
if self.test_config.checkpoint:
self.logger.info('Resume checkpoint: {}'.format(self.test_config.checkpoint))
self.restore_model(self.test_config.checkpoint)
示例2: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self,
train_dataloader,
test_dataloader,
logger,
tb_logger):
# Save GPU memory.
cudnn.benchmark = False
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
self.logger = logger
self.tb_logger = tb_logger
self.model_config = CONFIG.model
self.train_config = CONFIG.train
self.log_config = CONFIG.log
self.loss_dict = {'rec': None,
'comp': None,
'smooth_l1':None,
'grad':None,
'gabor':None}
self.test_loss_dict = {'rec': None,
'smooth_l1':None,
'mse':None,
'sad':None,
'grad':None,
'gabor':None}
self.grad_filter = torch.tensor(utils.get_gradfilter()).cuda()
self.gabor_filter = torch.tensor(utils.get_gaborfilter(16)).cuda()
self.build_model()
self.resume_step = None
self.best_loss = 1e+8
utils.print_network(self.G, CONFIG.version)
if self.train_config.resume_checkpoint:
self.logger.info('Resume checkpoint: {}'.format(self.train_config.resume_checkpoint))
self.restore_model(self.train_config.resume_checkpoint)
if self.model_config.imagenet_pretrain and self.train_config.resume_checkpoint is None:
self.logger.info('Load Imagenet Pretrained: {}'.format(self.model_config.imagenet_pretrain_path))
if self.model_config.arch.encoder == "vgg_encoder":
utils.load_VGG_pretrain(self.G, self.model_config.imagenet_pretrain_path)
else:
utils.load_imagenet_pretrain(self.G, self.model_config.imagenet_pretrain_path)
示例3: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 64
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# EBGAN parameters
self.pt_loss_weight = 0.1
self.margin = max(1, self.batch_size / 64.) # margin for loss function
# usually margin of 1 is enough, but for large batch size it must be larger than 1
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.MSE_loss = nn.MSELoss().cuda()
else:
self.MSE_loss = nn.MSELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load dataset
if self.dataset == 'mnist':
self.data_loader = DataLoader(datasets.MNIST('data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'fashion-mnist':
self.data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'celebA':
self.data_loader = utils.load_celebA('data/celebA', transform=transforms.Compose(
[transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
shuffle=True)
self.z_dim = 62
# fixed noise
if self.gpu_mode:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)
示例4: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 100
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.BCE_loss = nn.BCELoss().cuda()
else:
self.BCE_loss = nn.BCELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load mnist
self.data_X, self.data_Y = utils.load_mnist(args.dataset)
self.z_dim = 62
self.y_dim = 10
# fixed noise & condition
self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
for i in range(10):
self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim)
for j in range(1, self.y_dim):
self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim]
temp = torch.zeros((10, 1))
for i in range(self.y_dim):
temp[i, 0] = i
temp_y = torch.zeros((self.sample_num, 1))
for i in range(10):
temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp
self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
if self.gpu_mode:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True)
else:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True)
示例5: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 64
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
self.c = 0.01 # clipping value
self.n_critic = 5 # the number of iterations of the critic per generator iteration
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load dataset
if self.dataset == 'mnist':
self.data_loader = DataLoader(datasets.MNIST('data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'fashion-mnist':
self.data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'celebA':
self.data_loader = utils.load_celebA('data/celebA', transform=transforms.Compose(
[transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
shuffle=True)
self.z_dim = 62
# fixed noise
if self.gpu_mode:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)
示例6: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 64
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.MSE_loss = nn.MSELoss().cuda()
else:
self.MSE_loss = nn.MSELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load dataset
if self.dataset == 'mnist':
self.data_loader = DataLoader(datasets.MNIST('data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'fashion-mnist':
self.data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'celebA':
self.data_loader = utils.load_celebA('data/celebA', transform=transforms.Compose(
[transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
shuffle=True)
self.z_dim = 62
# fixed noise
if self.gpu_mode:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)
示例7: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 16
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.BCE_loss = nn.BCELoss().cuda()
else:
self.BCE_loss = nn.BCELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load dataset
if self.dataset == 'mnist':
self.data_loader = DataLoader(datasets.MNIST('data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'fashion-mnist':
self.data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'celebA':
self.data_loader = utils.load_celebA('data/celebA', transform=transforms.Compose(
[transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
shuffle=True)
self.z_dim = 62
# fixed noise
if self.gpu_mode:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)
示例8: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 64
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
self.lambda_ = 0.25
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.BCE_loss = nn.BCELoss().cuda()
else:
self.BCE_loss = nn.BCELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load dataset
if self.dataset == 'mnist':
self.data_loader = DataLoader(datasets.MNIST('data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'fashion-mnist':
self.data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'celebA':
self.data_loader = utils.load_celebA('data/celebA', transform=transforms.Compose(
[transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
shuffle=True)
self.z_dim = 62
# fixed noise
if self.gpu_mode:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)
示例9: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 100
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.BCE_loss = nn.BCELoss().cuda()
self.CE_loss = nn.CrossEntropyLoss().cuda()
else:
self.BCE_loss = nn.BCELoss()
self.CE_loss = nn.CrossEntropyLoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load mnist
self.data_X, self.data_Y = utils.load_mnist(args.dataset)
self.z_dim = 62
self.y_dim = 10
# fixed noise & condition
self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
for i in range(10):
self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim)
for j in range(1, self.y_dim):
self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim]
temp = torch.zeros((10, 1))
for i in range(self.y_dim):
temp[i, 0] = i
temp_y = torch.zeros((self.sample_num, 1))
for i in range(10):
temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp
self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
if self.gpu_mode:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True)
else:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True)
示例10: __init__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import print_network [as 別名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 64
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
self.lambda_ = 0.25
self.n_critic = 5 # the number of iterations of the critic per generator iteration
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load dataset
if self.dataset == 'mnist':
self.data_loader = DataLoader(datasets.MNIST('data/mnist', train=True, download=True,
transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'fashion-mnist':
self.data_loader = DataLoader(
datasets.FashionMNIST('data/fashion-mnist', train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor()])),
batch_size=self.batch_size, shuffle=True)
elif self.dataset == 'celebA':
self.data_loader = utils.load_celebA('data/celebA', transform=transforms.Compose(
[transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
shuffle=True)
self.z_dim = 62
# fixed noise
if self.gpu_mode:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)).cuda(), volatile=True)
else:
self.sample_z_ = Variable(torch.rand((self.batch_size, self.z_dim)), volatile=True)