當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.normalize方法代碼示例

本文整理匯總了Python中utils.normalize方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.normalize方法的具體用法?Python utils.normalize怎麽用?Python utils.normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.normalize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: search

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def search(self, model, vocab, query, n_results=10):
        desc=[convert(vocab, query)]#convert desc sentence to word indices
        padded_desc = pad(desc, self.data_params['desc_len'])
        desc_repr=model.repr_desc([padded_desc])
        desc_repr=desc_repr.astype(np.float32)
        desc_repr = normalize(desc_repr).T # [dim x 1]
        codes, sims = [], []
        threads=[]
        for i,code_reprs_chunk in enumerate(self._code_reprs):
            t = threading.Thread(target=self.search_thread, args = (codes,sims,desc_repr,code_reprs_chunk,i,n_results))
            threads.append(t)
        for t in threads:
            t.start()
        for t in threads:#wait until all sub-threads finish
            t.join()
        return codes,sims 
開發者ID:guxd,項目名稱:deep-code-search,代碼行數:18,代碼來源:main.py

示例2: search

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def search(config, model, vocab, query, n_results=10):
    model.eval()
    device = next(model.parameters()).device
    desc, desc_len =sent2indexes(query, vocab_desc, config['desc_len'])#convert query into word indices
    desc = torch.from_numpy(desc).unsqueeze(0).to(device)
    desc_len = torch.from_numpy(desc_len).clamp(max=config['desc_len']).to(device)
    with torch.no_grad():
        desc_repr = model.desc_encoding(desc, desc_len).data.cpu().numpy().astype(np.float32) # [1 x dim]
    if config['sim_measure']=='cos': # normalizing vector for fast cosine computation
        desc_repr = normalize(desc_repr) # [1 x dim]
    results =[]
    threads = []
    for i, codevecs_chunk in enumerate(codevecs):
        t = threading.Thread(target=search_thread, args = (results, desc_repr, codevecs_chunk, i, n_results, config['sim_measure']))
        threads.append(t)
    for t in threads:
        t.start()
    for t in threads:#wait until all sub-threads have completed
        t.join()
    return results 
開發者ID:guxd,項目名稱:deep-code-search,代碼行數:22,代碼來源:search.py

示例3: _dynamics_func

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def _dynamics_func(self, state, action, reuse):
        """
            Takes as input a state and action, and predicts the next state

            returns:
                next_state_pred: predicted next state

            implementation details (in order):
                (a) Normalize both the state and action by using the statistics of self._init_dataset and
                    the utils.normalize function
                (b) Concatenate the normalized state and action
                (c) Pass the concatenated, normalized state-action tensor through a neural network with
                    self._nn_layers number of layers using the function utils.build_mlp. The resulting output
                    is the normalized predicted difference between the next state and the current state
                (d) Unnormalize the delta state prediction, and add it to the current state in order to produce
                    the predicted next state

        """
        ### PROBLEM 1
        ### YOUR CODE HERE
        state_norm = utils.normalize(state, self._init_dataset.state_mean, self._init_dataset.state_std)
        action_norm = utils.normalize(action, self._init_dataset.action_mean, self._init_dataset.action_std)
        input_layer = tf.concat([state_norm, action_norm], axis=1)
        delta_pred_norm = utils.build_mlp(
            input_layer, 
            self._state_dim, 
            scope='dynamics_func',
            n_layers=self._nn_layers,
            reuse=reuse
        )
        delta_pred = utils.unnormalize(delta_pred_norm, self._init_dataset.delta_state_mean, self._init_dataset.delta_state_std)
        next_state_pred = state + delta_pred

        return next_state_pred 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:36,代碼來源:model_based_policy.py

示例4: _setup_training

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def _setup_training(self, state_ph, next_state_ph, next_state_pred):
        """
            Takes as input the current state, next state, and predicted next state, and returns
            the loss and optimizer for training the dynamics model

            returns:
                loss: Scalar loss tensor
                optimizer: Operation used to perform gradient descent

            implementation details (in order):
                (a) Compute both the actual state difference and the predicted state difference
                (b) Normalize both of these state differences by using the statistics of self._init_dataset and
                    the utils.normalize function
                (c) The loss function is the mean-squared-error between the normalized state difference and
                    normalized predicted state difference
                (d) Create the optimizer by minimizing the loss using the Adam optimizer with self._learning_rate

        """
        ### PROBLEM 1
        ### YOUR CODE HERE
        diff = next_state_ph - state_ph
        diff_pred = next_state_pred - state_ph
        diff_norm = utils.normalize(diff, self._init_dataset.delta_state_mean, self._init_dataset.delta_state_std)
        diff_pred_norm = utils.normalize(diff_pred, self._init_dataset.delta_state_mean, self._init_dataset.delta_state_std)
        loss = tf.losses.mean_squared_error(diff_norm, diff_pred_norm)
        optimizer = tf.train.AdamOptimizer(self._learning_rate).minimize(loss)

        return loss, optimizer 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:30,代碼來源:model_based_policy.py

示例5: forward_fc

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def forward_fc(self, inp, weights, prefix, reuse=False):
        hidden = normalize(tf.matmul(inp, weights['w1']) + weights['b1'], activation=tf.nn.relu, reuse=reuse, scope='0')
        for i in range(1,len(self.dim_hidden)):
            hidden = normalize(tf.matmul(hidden, weights['w'+str(i+1)]) + weights['b'+str(i+1)], activation=tf.nn.relu, reuse=reuse, scope=str(i+1))
        logits = tf.matmul(hidden, weights['w'+str(len(self.dim_hidden)+1)]) + weights['b'+str(len(self.dim_hidden)+1)]
        if 'val' in prefix:
            logits = tf.gather(logits, tf.range(self.dim_output_val), axis=1)
        return logits 
開發者ID:kylehkhsu,項目名稱:cactus-maml,代碼行數:10,代碼來源:maml.py

示例6: forward_fc

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def forward_fc(self, inp, weights, reuse=False):
        hidden = normalize(tf.matmul(inp, weights['w1']) + weights['b1'], activation=tf.nn.relu, reuse=reuse, scope='0')
        for i in range(1,len(self.dim_hidden)):
            hidden = normalize(tf.matmul(hidden, weights['w'+str(i+1)]) + weights['b'+str(i+1)], activation=tf.nn.relu, reuse=reuse, scope=str(i+1))
        return tf.matmul(hidden, weights['w'+str(len(self.dim_hidden)+1)]) + weights['b'+str(len(self.dim_hidden)+1)] 
開發者ID:cbfinn,項目名稱:maml,代碼行數:7,代碼來源:maml.py

示例7: localize_dt

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def localize_dt(dt: datetime, region_name=None):
    tz = region_tz(region_name)
    return tz.normalize(dt) if dt.tzinfo else tz.localize(dt) 
開發者ID:codeforboston,項目名稱:cornerwise,代碼行數:5,代碼來源:models.py

示例8: local_now

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def local_now(region_name=None):
    tz = region_tz(region_name)
    return tz.normalize(pytz.utc.localize(datetime.utcnow())) 
開發者ID:codeforboston,項目名稱:cornerwise,代碼行數:5,代碼來源:models.py

示例9: forgiving_dateparse

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def forgiving_dateparse(dt, tz=pytz.utc):
    if isinstance(dt, str):
        dt = dateparse.parse_datetime(dt)
    elif not isinstance(dt, datetime):
        return None

    if dt.tzinfo:
        try:
            return tz.normalize(dt)
        except AttributeError:
            return tz.localize(dt.replace(tzinfo=None))
    return tz.localize(dt) 
開發者ID:codeforboston,項目名稱:cornerwise,代碼行數:14,代碼來源:models.py

示例10: save

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def save(self, *args, **kwargs):
        if not self.handle:
            self.handle = utils.normalize(self.name)
        super().save(*args, **kwargs) 
開發者ID:codeforboston,項目名稱:cornerwise,代碼行數:6,代碼來源:models.py

示例11: forward_fc

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def forward_fc(self, inp, weights, reuse=False):
        hidden = normalize(tf.matmul(inp, weights['w1']) + weights['b1'],
                           activation=tf.nn.relu, reuse=reuse, scope='0')
        for i in range(1, len(self.dim_hidden)):
            hidden = normalize(tf.matmul(hidden, weights['w' + str(i + 1)]) + weights['b' + str(i + 1)],
                               activation=tf.nn.relu, reuse=reuse, scope=str(i + 1))
        return tf.matmul(hidden, weights['w' + str(len(self.dim_hidden) + 1)]) + \
               weights['b' + str(len(self.dim_hidden) + 1)] 
開發者ID:yoonholee,項目名稱:MT-net,代碼行數:10,代碼來源:maml.py

示例12: forward_fc_withT

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def forward_fc_withT(self, inp, weights, reuse=False):
        hidden = tf.matmul(tf.matmul(inp, weights['w1']) + weights['b1'], weights['w1_f'])
        hidden = normalize(hidden, activation=tf.nn.relu, reuse=reuse, scope='1')
        hidden = tf.matmul(tf.matmul(hidden, weights['w2']) + weights['b2'], weights['w2_f'])
        hidden = normalize(hidden, activation=tf.nn.relu, reuse=reuse, scope='2')
        hidden = tf.matmul(tf.matmul(hidden, weights['w3']) + weights['b3'], weights['w3_f'])
        return hidden 
開發者ID:yoonholee,項目名稱:MT-net,代碼行數:9,代碼來源:maml.py

示例13: forward_conv_withT

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def forward_conv_withT(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        def conv_tout(inp, cweight, bweight, rweight, reuse, scope, activation=tf.nn.relu, max_pool_pad='VALID',
                       residual=False):
            stride, no_stride = [1, 2, 2, 1], [1, 1, 1, 1]
            if FLAGS.max_pool:
                conv_output = tf.nn.conv2d(inp, cweight, no_stride, 'SAME') + bweight
            else:
                conv_output = tf.nn.conv2d(inp, cweight, stride, 'SAME') + bweight
            conv_output = tf.nn.conv2d(conv_output, rweight, no_stride, 'SAME')
            normed = normalize(conv_output, activation, reuse, scope)
            if FLAGS.max_pool:
                normed = tf.nn.max_pool(normed, stride, stride, max_pool_pad)
            return normed

        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])
        hidden1 = conv_tout(inp, weights['conv1'], weights['b1'], weights['conv1_f'], reuse, scope + '0')
        hidden2 = conv_tout(hidden1, weights['conv2'], weights['b2'], weights['conv2_f'], reuse, scope + '1')
        hidden3 = conv_tout(hidden2, weights['conv3'], weights['b3'], weights['conv3_f'], reuse, scope + '2')
        hidden4 = conv_tout(hidden3, weights['conv4'], weights['b4'], weights['conv4_f'], reuse, scope + '3')

        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])
        hidden5 = tf.matmul(hidden4, weights['w5']) + weights['b5']
        return tf.matmul(hidden5, weights['w5_f']) 
開發者ID:yoonholee,項目名稱:MT-net,代碼行數:31,代碼來源:maml.py

示例14: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def main():
    global args
    args = parser.parse_args()

    if not os.path.exists(args.output_path):
        comm = 'python extract_feat.py \
                --arch {} \
                --batch-size {} \
                --input-size {} \
                --feature-dim {} \
                --load-path {} \
                --bin-file {} \
                --output-path {}'\
                .format(args.arch, args.batch_size, args.input_size, args.feature_dim,
                        args.load_path, args.bin_file, args.output_path)
        print(' '.join(comm.split()))
        os.system(comm)

    features = np.load(args.output_path).reshape(-1, args.feature_dim)
    _, lbs = bin_loader(args.bin_file)
    print('feature shape: {}'.format(features.shape))
    assert features.shape[0] == 2 * len(lbs), "{} vs {}".format(
        features.shape[0], 2 * len(lbs))

    features = normalize(features)
    _, _, acc, val, val_std, far = evaluate(features,
                                            lbs,
                                            nrof_folds=args.nfolds,
                                            distance_metric=0)
    print("accuracy: {:.4f}({:.4f})".format(acc.mean(), acc.std())) 
開發者ID:yl-1993,項目名稱:hfsoftmax,代碼行數:32,代碼來源:eval.py

示例15: repr_code

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import normalize [as 別名]
def repr_code(self, model):
        logger.info('Loading the use data ..')
        methnames = data_loader.load_hdf5(self.data_path+self.data_params['use_methname'],0,-1)
        apiseqs = data_loader.load_hdf5(self.data_path+self.data_params['use_apiseq'],0,-1)
        tokens = data_loader.load_hdf5(self.data_path+self.data_params['use_tokens'],0,-1) 
        methnames = pad(methnames, self.data_params['methname_len'])
        apiseqs = pad(apiseqs, self.data_params['apiseq_len'])
        tokens = pad(tokens, self.data_params['tokens_len'])
        
        logger.info('Representing code ..')
        vecs= model.repr_code([methnames, apiseqs, tokens], batch_size=10000)
        vecs= vecs.astype(np.float)
        vecs= normalize(vecs)
        return vecs 
開發者ID:guxd,項目名稱:deep-code-search,代碼行數:16,代碼來源:main.py


注:本文中的utils.normalize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。