當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.non_max_suppression方法代碼示例

本文整理匯總了Python中utils.non_max_suppression方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.non_max_suppression方法的具體用法?Python utils.non_max_suppression怎麽用?Python utils.non_max_suppression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.non_max_suppression方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: random_image

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import non_max_suppression [as 別名]
def random_image(self, height, width):
        """Creates random specifications of an image with multiple shapes.
        Returns the background color of the image and a list of shape
        specifications that can be used to draw the image.
        """
        # Pick random background color
        bg_color = np.array([random.randint(0, 255) for _ in range(3)])
        # Generate a few random shapes and record their
        # bounding boxes
        shapes = []
        boxes = []
        N = random.randint(1, 4)
        for _ in range(N):
            shape, color, dims = self.random_shape(height, width)
            shapes.append((shape, color, dims))
            x, y, s = dims
            boxes.append([y - s, x - s, y + s, x + s])
        # Apply non-max suppression wit 0.3 threshold to avoid
        # shapes covering each other
        keep_ixs = utils.non_max_suppression(
            np.array(boxes), np.arange(N), 0.3)
        shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
        return bg_color, shapes 
開發者ID:sahibdhanjal,項目名稱:Mask-RCNN-Pedestrian-Detection,代碼行數:25,代碼來源:shapes.py

示例2: random_image

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import non_max_suppression [as 別名]
def random_image(self, height, width):
        """Creates random specifications of an image with multiple shapes.
        Returns the background color of the image and a list of shape
        specifications that can be used to draw the image.
        """
        # Pick random background color
        bg_color = np.array([random.randint(0, 255) for _ in range(3)])
        # Generate a few random shapes and record their
        # bounding boxes
        shapes = []
        boxes = []
        N = random.randint(1, 4)
        for _ in range(N):
            shape, color, dims = self.random_shape(height, width)
            shapes.append((shape, color, dims))
            x, y, s = dims
            boxes.append([y-s, x-s, y+s, x+s])
        # Apply non-max suppression wit 0.3 threshold to avoid
        # shapes covering each other
        keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N), 0.3)
        shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
        return bg_color, shapes


# In[5]:


# Training dataset 
開發者ID:jremillard,項目名稱:images-to-osm,代碼行數:30,代碼來源:train_shapes.py

示例3: call

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import non_max_suppression [as 別名]
def call(self, inputs):
        # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1]
        scores = inputs[0][:, :, 1]
        # Box deltas [batch, num_rois, 4]
        deltas = inputs[1]
        deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4])
        # Base anchors
        anchors = self.anchors

        # Improve performance by trimming to top anchors by score
        # and doing the rest on the smaller subset.
        pre_nms_limit = min(6000, self.anchors.shape[0])
        ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True,
                         name="top_anchors").indices
        scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        anchors = utils.batch_slice(ix, lambda x: tf.gather(anchors, x),
                                    self.config.IMAGES_PER_GPU,
                                    names=["pre_nms_anchors"])

        # Apply deltas to anchors to get refined anchors.
        # [batch, N, (y1, x1, y2, x2)]
        boxes = utils.batch_slice([anchors, deltas],
                                  lambda x, y: apply_box_deltas_graph(x, y),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors"])

        # Clip to image boundaries. [batch, N, (y1, x1, y2, x2)]
        height, width = self.config.IMAGE_SHAPE[:2]
        window = np.array([0, 0, height, width]).astype(np.float32)
        boxes = utils.batch_slice(boxes,
                                  lambda x: clip_boxes_graph(x, window),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors_clipped"])

        # Filter out small boxes
        # According to Xinlei Chen's paper, this reduces detection accuracy
        # for small objects, so we're skipping it.

        # Normalize dimensions to range of 0 to 1.
        normalized_boxes = boxes / np.array([[height, width, height, width]])

        # Non-max suppression
        def nms(normalized_boxes, scores):
            indices = tf.image.non_max_suppression(
                normalized_boxes, scores, self.proposal_count,
                self.nms_threshold, name="rpn_non_max_suppression")
            proposals = tf.gather(normalized_boxes, indices)
            # Pad if needed
            padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0)
            proposals = tf.pad(proposals, [(0, padding), (0, 0)])
            return proposals
        proposals = utils.batch_slice([normalized_boxes, scores], nms,
                                      self.config.IMAGES_PER_GPU)
        return proposals 
開發者ID:olgaliak,項目名稱:segmentation-unet-maskrcnn,代碼行數:59,代碼來源:model.py

示例4: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import non_max_suppression [as 別名]
def main(argv=None):

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)

    config = tf.ConfigProto(
        gpu_options=gpu_options,
        log_device_placement=False,
    )

    img = Image.open(FLAGS.input_img)
    img_resized = letter_box_image(img, FLAGS.size, FLAGS.size, 128)
    img_resized = img_resized.astype(np.float32)
    classes = load_coco_names(FLAGS.class_names)

    if FLAGS.frozen_model:

        t0 = time.time()
        frozenGraph = load_graph(FLAGS.frozen_model)
        print("Loaded graph in {:.2f}s".format(time.time()-t0))

        boxes, inputs = get_boxes_and_inputs_pb(frozenGraph)

        with tf.Session(graph=frozenGraph, config=config) as sess:
            t0 = time.time()
            detected_boxes = sess.run(boxes, feed_dict={inputs: [img_resized]})

    else:
        if FLAGS.tiny:
            model = yolo_v3_tiny.yolo_v3_tiny
        else:
            model = yolo_v3.yolo_v3

        boxes, inputs = get_boxes_and_inputs(model, len(classes), FLAGS.size, FLAGS.data_format)

        saver = tf.train.Saver(var_list=tf.global_variables(scope='detector'))

        with tf.Session(config=config) as sess:
            t0 = time.time()
            saver.restore(sess, FLAGS.ckpt_file)
            print('Model restored in {:.2f}s'.format(time.time()-t0))

            t0 = time.time()
            detected_boxes = sess.run(boxes, feed_dict={inputs: [img_resized]})

    filtered_boxes = non_max_suppression(detected_boxes,
                                         confidence_threshold=FLAGS.conf_threshold,
                                         iou_threshold=FLAGS.iou_threshold)
    print("Predictions found in {:.2f}s".format(time.time() - t0))

    draw_boxes(filtered_boxes, img, classes, (FLAGS.size, FLAGS.size), True)

    img.save(FLAGS.output_img) 
開發者ID:PINTO0309,項目名稱:OpenVINO-YoloV3,代碼行數:54,代碼來源:demo.py

示例5: detect

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import non_max_suppression [as 別名]
def detect(self, image):
        clone = image.copy()

        image = rgb2gray(image)

        # list to store the detections
        detections = []
        # current scale of the image
        downscale_power = 0

        # downscale the image and iterate
        for im_scaled in pyramid(image, downscale=self.downscale, min_size=self.window_size):
            # if the width or height of the scaled image is less than
            # the width or height of the window, then end the iterations
            if im_scaled.shape[0] < self.window_size[1] or im_scaled.shape[1] < self.window_size[0]:
                break
            for (x, y, im_window) in sliding_window(im_scaled, self.window_step_size,
                                                    self.window_size):
                if im_window.shape[0] != self.window_size[1] or im_window.shape[1] != self.window_size[0]:
                    continue

                # calculate the HOG features
                feature_vector = hog(im_window)
                X = np.array([feature_vector])
                prediction = self.clf.predict(X)
                if prediction == 1:
                    x1 = int(x * (self.downscale ** downscale_power))
                    y1 = int(y * (self.downscale ** downscale_power))
                    detections.append((x1, y1,
                                       x1 + int(self.window_size[0] * (
                                               self.downscale ** downscale_power)),
                                       y1 + int(self.window_size[1] * (
                                               self.downscale ** downscale_power))))

            # Move the the next scale
            downscale_power += 1

        # Display the results before performing NMS
        clone_before_nms = clone.copy()
        for (x1, y1, x2, y2) in detections:
            # Draw the detections
            cv2.rectangle(clone_before_nms, (x1, y1), (x2, y2), (0, 255, 0), thickness=2)

        # Perform Non Maxima Suppression
        detections = non_max_suppression(np.array(detections), self.threshold)

        clone_after_nms = clone
        # Display the results after performing NMS
        for (x1, y1, x2, y2) in detections:
            # Draw the detections
            cv2.rectangle(clone_after_nms, (x1, y1), (x2, y2), (0, 255, 0), thickness=2)

        return clone_before_nms, clone_after_nms 
開發者ID:VladKha,項目名稱:object_detector,代碼行數:55,代碼來源:test_classifier.py


注:本文中的utils.non_max_suppression方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。