當前位置: 首頁>>代碼示例>>Python>>正文


Python nms_wrapper.nms方法代碼示例

本文整理匯總了Python中utils.nms_wrapper.nms方法的典型用法代碼示例。如果您正苦於以下問題:Python nms_wrapper.nms方法的具體用法?Python nms_wrapper.nms怎麽用?Python nms_wrapper.nms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.nms_wrapper的用法示例。


在下文中一共展示了nms_wrapper.nms方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: nms_process

# 需要導入模塊: from utils import nms_wrapper [as 別名]
# 或者: from utils.nms_wrapper import nms [as 別名]
def nms_process(num_classes, i, scores, boxes, cfg, min_thresh, all_boxes, max_per_image):
    for j in range(1, num_classes): # ignore the bg(category_id=0)
        inds = np.where(scores[:,j] > min_thresh)[0]
        if len(inds) == 0:
            all_boxes[j][i] = np.empty([0,5], dtype=np.float32)
            continue
        c_bboxes = boxes[inds]
        c_scores = scores[inds, j]
        c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(np.float32, copy=False)

        soft_nms = cfg.test_cfg.soft_nms
        keep = nms(c_dets, cfg.test_cfg.iou, force_cpu=soft_nms)
        keep = keep[:cfg.test_cfg.keep_per_class] # keep only the highest boxes
        c_dets = c_dets[keep, :]
        all_boxes[j][i] = c_dets
    if max_per_image > 0:
        image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1, num_classes)])
        if len(image_scores) > max_per_image:
            image_thresh = np.sort(image_scores)[-max_per_image]
            for j in range(1, num_classes):
                keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                all_boxes[j][i] = all_boxes[j][i][keep, :] 
開發者ID:qijiezhao,項目名稱:M2Det,代碼行數:24,代碼來源:core.py

示例2: im_detect

# 需要導入模塊: from utils import nms_wrapper [as 別名]
# 或者: from utils.nms_wrapper import nms [as 別名]
def im_detect(img, net, detector, transform, thresh=0.01):
    with torch.no_grad():
        t0 = time.time()
        w, h = img.shape[1], img.shape[0]
        x = transform(img)[0].unsqueeze(0)
        x = x.cuda()
        t1 = time.time()
        output = net(x)
        boxes, scores = detector.forward(output)
        t2 = time.time()
        max_conf, max_id = scores[0].topk(1, 1, True, True)
        pos = max_id > 0
        if len(pos) == 0:
            return np.empty((0, 6))
        boxes = boxes[0][pos.view(-1, 1).expand(len(pos), 4)].view(-1, 4)
        scores = max_conf[pos].view(-1, 1)
        max_id = max_id[pos].view(-1, 1)
        inds = scores > thresh
        if len(inds) == 0:
            return np.empty((0, 6))
        boxes = boxes[inds.view(-1, 1).expand(len(inds), 4)].view(-1, 4)
        scores = scores[inds].view(-1, 1)
        max_id = max_id[inds].view(-1, 1)
        c_dets = torch.cat((boxes, scores, max_id.float()), 1).cpu().numpy()
        img_classes = np.unique(c_dets[:, -1])
        output = None
        flag = False
        for cls in img_classes:
            cls_mask = np.where(c_dets[:, -1] == cls)[0]
            image_pred_class = c_dets[cls_mask, :]
            keep = nms(image_pred_class, cfg.TEST.NMS_OVERLAP, force_cpu=True)
            keep = keep[:50]
            image_pred_class = image_pred_class[keep, :]
            if not flag:
                output = image_pred_class
                flag = True
            else:
                output = np.concatenate((output, image_pred_class), axis=0)
        output[:, 0:2][output[:, 0:2] < 0] = 0
        output[:, 2:4][output[:, 2:4] > 1] = 1
        scale = np.array([w, h, w, h])
        output[:, :4] = output[:, :4] * scale
        t3 = time.time()
        print("transform_t:", round(t1 - t0, 3), "detect_time:",
              round(t2 - t1, 3), "nms_time:", round(t3 - t2, 3))
    return output 
開發者ID:JialeCao001,項目名稱:HSD,代碼行數:48,代碼來源:demo.py

示例3: detect_face

# 需要導入模塊: from utils import nms_wrapper [as 別名]
# 或者: from utils.nms_wrapper import nms [as 別名]
def detect_face(net, img, resize):
    if resize != 1:
        img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    #img = img[[2, 1, 0], :, :]
    img = torch.from_numpy(img).unsqueeze(0)
    if args.cuda:
        img = img.cuda()
        scale = scale.cuda()

    out = net(img)  # forward pass
    priorbox = PriorBox(cfg, out[2], (im_height, im_width), phase='test')
    priors = priorbox.forward()
    if args.cuda:
        priors = priors.cuda()
    loc, conf, _ = out
    print(loc.size(), conf.size())
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.data.cpu().numpy()[:, 1]

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    scores = scores[order]
    #print(boxes)

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
    keep = nms(dets, args.nms_threshold, force_cpu=args.cpu)
    dets = dets[keep, :]
    #print(dets)

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    return dets 
開發者ID:luuuyi,項目名稱:S3FD.PyTorch,代碼行數:48,代碼來源:demo_s3fd.py

示例4: detect_face

# 需要導入模塊: from utils import nms_wrapper [as 別名]
# 或者: from utils.nms_wrapper import nms [as 別名]
def detect_face(net, img, resize):
    if resize != 1:
        img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    if args.cuda:
        img = img.cuda()
        scale = scale.cuda()

    out = net(img)  # forward pass
    priorbox = PriorBox(cfg, out[2], (im_height, im_width), phase='test')
    priors = priorbox.forward()
    if args.cuda:
        priors = priors.cuda()
    loc, conf, _ = out
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.data.cpu().numpy()[:, 1]

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    scores = scores[order]
    #print(boxes)

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
    keep = nms(dets, args.nms_threshold, force_cpu=args.cpu)
    dets = dets[keep, :]
    #print(dets)

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    return dets 
開發者ID:luuuyi,項目名稱:S3FD.PyTorch,代碼行數:46,代碼來源:test_s3fd_wider.py

示例5: test_net

# 需要導入模塊: from utils import nms_wrapper [as 別名]
# 或者: from utils.nms_wrapper import nms [as 別名]
def test_net(save_folder, net, detector, cuda, testset, transform, top_k=300, thresh=0.005):

    if not os.path.exists(save_folder):
        os.mkdir(save_folder)
    num_images = len(testset)
    num_classes = 81
    all_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)]

    det_file = os.path.join(save_folder, 'detections.pkl')

    for i in range(num_images):
        img = testset.pull_image(i)
        x = Variable(transform(img).unsqueeze(0), volatile=True)
        x = x.cuda() if cuda else x

        out = net(x)
        boxes, scores = detector.forward(out, priors)

        boxes = boxes[0]
        scores = scores[0]
        boxes = boxes.cpu().numpy()
        scores = scores.cpu().numpy()
        # scale   back up to the image
        scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]).cpu().numpy()
        boxes *= scale

        for j in range(1, num_classes):
            inds = np.where(scores[:, j] > thresh)[0]
            if len(inds) == 0:
                all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
                continue
            c_bboxes = boxes[inds]
            c_scores = scores[inds, j]
            c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(np.float32, copy=False)

            cpu = False
            keep = nms(c_dets, 0.45, force_cpu=cpu)
            keep = keep[:50]
            c_dets = c_dets[keep, :]
            all_boxes[j][i] = c_dets

        if top_k > 0:
            image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1,num_classes)])
            if len(image_scores) > top_k:
                image_thresh = np.sort(image_scores)[-top_k]
                for j in range(1, num_classes):
                    keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                    all_boxes[j][i] = all_boxes[j][i][keep, :]

    with open(det_file, 'wb') as f:
        pickle.dump(all_boxes, f, protocol=2)
    print('Evaluating detections')
    testset.evaluate_detections(all_boxes, save_folder) 
開發者ID:vaesl,項目名稱:LRF-Net,代碼行數:55,代碼來源:test_LRF.py

示例6: test_net

# 需要導入模塊: from utils import nms_wrapper [as 別名]
# 或者: from utils.nms_wrapper import nms [as 別名]
def test_net(save_folder, net, detector, cuda, testset, transform, top_k=300, thresh=0.005):

    if not os.path.exists(save_folder):
        os.mkdir(save_folder)
    num_images = len(testset)
    num_classes = (21, 81)[args.dataset == 'COCO']
    all_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)]

    det_file = os.path.join(save_folder, 'detections.pkl')

    for i in range(num_images):
        img = testset.pull_image(i)
        x = Variable(transform(img).unsqueeze(0), volatile=True)
        x = x.cuda() if cuda else x

        out = net(x)
        boxes, scores = detector.forward(out, priors)

        boxes = boxes[0]
        scores = scores[0]
        boxes = boxes.cpu().numpy()
        scores = scores.cpu().numpy()
        # scale   back up to the image
        scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]).cpu().numpy()
        boxes *= scale

        _t['nms'].tic()
        for j in range(1, num_classes):
            inds = np.where(scores[:, j] > thresh)[0]
            if len(inds) == 0:
                all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
                continue
            c_bboxes = boxes[inds]
            c_scores = scores[inds, j]
            c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(np.float32, copy=False)

            cpu = True if args.dataset == 'VOC' else False
            keep = nms(c_dets, 0.45, force_cpu=cpu)
            keep = keep[:50]
            c_dets = c_dets[keep, :]
            all_boxes[j][i] = c_dets

        if top_k > 0:
            image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1,num_classes)])
            if len(image_scores) > top_k:
                image_thresh = np.sort(image_scores)[-top_k]
                for j in range(1, num_classes):
                    keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                    all_boxes[j][i] = all_boxes[j][i][keep, :]

    with open(det_file, 'wb') as f:
        pickle.dump(all_boxes, f, protocol=2)
    print('Evaluating detections')
    testset.evaluate_detections(all_boxes, save_folder) 
開發者ID:vaesl,項目名稱:LFIP,代碼行數:56,代碼來源:test_LFIP.py

示例7: detection_postprecess

# 需要導入模塊: from utils import nms_wrapper [as 別名]
# 或者: from utils.nms_wrapper import nms [as 別名]
def detection_postprecess(detection, iou_thresh, num_classes, input_wh, ori_wh, use_pad=False, nms_conf=0.4):
    assert detection.size(0) == 1, "only support batch_size == 1"
    conf_mask = (detection[:,:,4] > iou_thresh).float().unsqueeze(2)
    detection = detection * conf_mask
    try:
        ind_nz = torch.nonzero(detection[:,:,4]).transpose(0,1).contiguous()
    except:
        print("detect no results")
        return np.empty([0, 5], dtype=np.float32)
    bbox_pred = point_form(detection[:, :, :4].view(-1, 4))
    conf_pred = detection[:, :, 4].view(-1, 1)
    cls_pred = detection[:, :, 5:].view(-1, num_classes)

    max_conf, max_conf_idx = torch.max(cls_pred, 1) 

    max_conf = max_conf.float().unsqueeze(1)
    max_conf_idx = max_conf_idx.float().unsqueeze(1)

    # score = (conf_pred * max_conf).view(-1, 1)
    score = conf_pred
    image_pred = torch.cat((bbox_pred, score, max_conf, max_conf_idx), 1)

    non_zero_ind =  (torch.nonzero(image_pred[:,4]))
    image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1, 7)
    try:
        img_classes = unique(image_pred_[:,-1])
    except:
        print("no class find")
        return np.empty([0, 7], dtype=np.float32)
    flag = False
    out_out = None
    for cls in img_classes:
        cls_mask = image_pred_*(image_pred_[:,-1] == cls).float().unsqueeze(1)
        class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze()
        
        image_pred_class = image_pred_[class_mask_ind].view(-1,7)
        keep = nms(image_pred_class.cpu().numpy(), nms_conf, force_cpu=True)
        image_pred_class = image_pred_class[keep]
        if not flag:
            out_put = image_pred_class
            flag = True
        else:
            out_put = torch.cat((out_put, image_pred_class), 0)


    image_pred_class = out_put
    if use_pad:
        scaling_factor = min(input_wh[0] / ori_wh[0], input_wh[1] / ori_wh[1])
        image_pred_class[:,[0,2]] -= (input_wh[0] - scaling_factor * ori_wh[0]) / 2
        image_pred_class[:,[1,3]] -= (input_wh[1] - scaling_factor * ori_wh[1]) / 2
        image_pred_class[:,:4] /= scaling_factor
    else:
        image_pred_class[:,[0,2]] /= input_wh[0]
        image_pred_class[:,[1,3]] /= input_wh[1]
        image_pred_class[:, [0,2]] *= ori_wh[0]
        image_pred_class[:, [1,3]] *= ori_wh[1]

    for i in range(image_pred_class.shape[0]):
        image_pred_class[i, [0,2]] = torch.clamp(image_pred_class[i, [0,2]], 0.0, ori_wh[0])
        image_pred_class[i, [1,3]] = torch.clamp(image_pred_class[i, [1,3]], 0.0, ori_wh[1])
    return image_pred_class.cpu().numpy() 
開發者ID:yqyao,項目名稱:YOLOv3_Pytorch,代碼行數:63,代碼來源:box_utils.py


注:本文中的utils.nms_wrapper.nms方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。