當前位置: 首頁>>代碼示例>>Python>>正文


Python metrics.Evaluator方法代碼示例

本文整理匯總了Python中utils.metrics.Evaluator方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.Evaluator方法的具體用法?Python metrics.Evaluator怎麽用?Python metrics.Evaluator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.metrics的用法示例。


在下文中一共展示了metrics.Evaluator方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from utils import metrics [as 別名]
# 或者: from utils.metrics import Evaluator [as 別名]
def __init__(self, args, model, train_set, val_set, test_set, class_weights, saver):
        self.args = args
        self.saver = saver
        self.saver.save_experiment_config()
        self.train_dataloader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
        self.val_dataloader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
        self.test_dataloader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
        self.train_summary = TensorboardSummary(os.path.join(self.saver.experiment_dir, "train"))
        self.train_writer = self.train_summary.create_summary()
        self.val_summary = TensorboardSummary(os.path.join(self.saver.experiment_dir, "validation"))
        self.val_writer = self.val_summary.create_summary()
        self.model = model
        self.dataset_size = {'train': len(train_set), 'val': len(val_set), 'test': len(test_set)}

        train_params = [{'params': model.get_1x_lr_params(), 'lr': args.lr},
                        {'params': model.get_10x_lr_params(), 'lr': args.lr * 10}]

        if args.use_balanced_weights:
            weight = torch.from_numpy(class_weights.astype(np.float32))
        else:
            weight = None

        if args.optimizer == 'SGD':
            print('Using SGD')
            self.optimizer = torch.optim.SGD(train_params, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov)
        elif args.optimizer == 'Adam':
            print('Using Adam')
            self.optimizer = torch.optim.Adam(train_params, weight_decay=args.weight_decay)
        else:
            raise NotImplementedError

        self.lr_scheduler = None
        if args.use_lr_scheduler:
            if args.lr_scheduler == 'step':
                print('Using step lr scheduler')                
                self.lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=[int(x) for x in args.step_size.split(",")], gamma=0.1)

        self.criterion = SegmentationLosses(weight=weight, ignore_index=255, cuda=args.cuda).build_loss(mode=args.loss_type)
        self.evaluator = Evaluator(train_set.num_classes)
        self.best_pred = 0.0 
開發者ID:nihalsid,項目名稱:ViewAL,代碼行數:42,代碼來源:trainer.py

示例2: __init__

# 需要導入模塊: from utils import metrics [as 別名]
# 或者: from utils.metrics import Evaluator [as 別名]
def __init__(self, args):
        self.args = args

        # Define Saver
        self.saver = Saver(args)
        self.saver.save_experiment_config()
        # Define Tensorboard Summary
        self.summary = TensorboardSummary(self.saver.experiment_dir)
        self.writer = self.summary.create_summary()
        # PATH = args.path
        # Define Dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True}
        self.train_loader, self.val_loader, self.test_loader, self.nclass = make_data_loader(args, **kwargs)

        # Define network
        model = SCNN(nclass=self.nclass,backbone=args.backbone,output_stride=args.out_stride,cuda = args.cuda)

        # Define Optimizer
        optimizer = torch.optim.SGD(model.parameters(),args.lr, momentum=args.momentum,
                                    weight_decay=args.weight_decay, nesterov=args.nesterov)

        # Define Criterion
        weight = None
        self.criterion = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)
        self.model, self.optimizer = model, optimizer
        
        # Define Evaluator
        self.evaluator = Evaluator(self.nclass)
        # Define lr scheduler
        self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr,
                                            args.epochs, len(self.train_loader))

        # Using cuda
        if args.cuda:
            self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids)
            # patch_replication_callback(self.model)
            self.model = self.model.cuda()

        # Resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch'])) 
開發者ID:forlovess,項目名稱:SCNN-pytorch,代碼行數:56,代碼來源:train.py

示例3: forward_all

# 需要導入模塊: from utils import metrics [as 別名]
# 或者: from utils.metrics import Evaluator [as 別名]
def forward_all(net_inference, dataloader, visualize=False, opt=None):
    evaluator = Evaluator(21)
    evaluator.reset()
    with torch.no_grad():
        for ii, sample in enumerate(dataloader):
            image, label = sample['image'].cuda(), sample['label'].cuda()

            activations = net_inference(image)

            image = image.cpu().numpy()
            label = label.cpu().numpy().astype(np.uint8)

            logits = activations[list(activations.keys())[-1]] if type(activations) != torch.Tensor else activations
            pred = torch.max(logits, 1)[1].cpu().numpy().astype(np.uint8)
            
            evaluator.add_batch(label, pred)

            # print(label.shape, pred.shape)
            if visualize:
                for jj in range(sample["image"].size()[0]):
                    segmap_label = decode_segmap(label[jj], dataset='pascal')
                    segmap_pred = decode_segmap(pred[jj], dataset='pascal')

                    img_tmp = np.transpose(image[jj], axes=[1, 2, 0])
                    img_tmp *= (0.229, 0.224, 0.225)
                    img_tmp += (0.485, 0.456, 0.406)
                    img_tmp *= 255.0
                    img_tmp = img_tmp.astype(np.uint8)

                    cv2.imshow('image', img_tmp[:, :, [2,1,0]])
                    cv2.imshow('gt', segmap_label)
                    cv2.imshow('pred', segmap_pred)
                    cv2.waitKey(0)

    Acc = evaluator.Pixel_Accuracy()
    Acc_class = evaluator.Pixel_Accuracy_Class()
    mIoU = evaluator.Mean_Intersection_over_Union()
    FWIoU = evaluator.Frequency_Weighted_Intersection_over_Union()
    print("Acc: {}".format(Acc))
    print("Acc_class: {}".format(Acc_class))
    print("mIoU: {}".format(mIoU))
    print("FWIoU: {}".format(FWIoU))
    if opt is not None:
        with open("seg_result.txt", 'a+') as ww:
            ww.write("{}, quant: {}, relu: {}, equalize: {}, absorption: {}, correction: {}, clip: {}, distill_range: {}\n".format(
                opt.dataset, opt.quantize, opt.relu, opt.equalize, opt.absorption, opt.correction, opt.clip_weight, opt.distill_range
            ))
            ww.write("Acc: {}, Acc_class: {}, mIoU: {}, FWIoU: {}\n\n".format(Acc, Acc_class, mIoU, FWIoU)) 
開發者ID:jakc4103,項目名稱:DFQ,代碼行數:50,代碼來源:utils.py


注:本文中的utils.metrics.Evaluator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。