本文整理匯總了Python中utils.merge_dicts方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.merge_dicts方法的具體用法?Python utils.merge_dicts怎麽用?Python utils.merge_dicts使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils
的用法示例。
在下文中一共展示了utils.merge_dicts方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_place_order_tag
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import merge_dicts [as 別名]
def test_place_order_tag(kiteconnect):
"""Send custom tag and get it in orders."""
tag = "mytag"
updated_params = utils.merge_dicts(params, {
"product": kiteconnect.PRODUCT_MIS,
"variety": kiteconnect.VARIETY_REGULAR,
"order_type": kiteconnect.ORDER_TYPE_MARKET,
"tag": tag
})
order_id = kiteconnect.place_order(**updated_params)
order_info = kiteconnect.order_history(order_id=order_id)
assert order_info[0]["tag"] == tag
try:
cleanup_orders(kiteconnect, order_id)
except Exception as e:
warnings.warn(UserWarning("Error while cleaning up orders: {}".format(e)))
示例2: setup_order_modify_cancel
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import merge_dicts [as 別名]
def setup_order_modify_cancel(kiteconnect, variety):
symbol = params["exchange"] + ":" + params["tradingsymbol"]
ltp = kiteconnect.ltp(symbol)
updated_params = utils.merge_dicts(params, {
"product": kiteconnect.PRODUCT_MIS,
"variety": variety,
"order_type": kiteconnect.ORDER_TYPE_LIMIT
})
diff = ltp[symbol]["last_price"] * 0.01
updated_params["price"] = ltp[symbol]["last_price"] - (diff - (diff % 1))
order_id = kiteconnect.place_order(**updated_params)
# delay order fetch so order is not in received state
time.sleep(0.5)
order = kiteconnect.order_history(order_id)
status = order[-1]["status"].upper()
if not is_pending_order(status):
warnings.warn(UserWarning("Order is not open with status: ", status))
return
return (updated_params, order_id, order)
示例3: main_eval
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import merge_dicts [as 別名]
def main_eval():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--gt_path", type=str, default="data/tvqa_plus_val.json",
help="ground-truth json file path")
parser.add_argument("--pred_path", type=str,
help="input prediction json file path, the same format as the results "
"returned by load_tvqa_plus_annotation func")
parser.add_argument("--word2idx_path", type=str, default="data/word2idx.json",
help="word2idx json file path, provided with the evaluation code")
parser.add_argument("--output_path", type=str,
help="path to store the calculated metrics")
parser.add_argument("--no_preproc_pred", action="store_true",)
args = parser.parse_args()
# Display settings
print('------------ Options -------------')
for k, v in sorted(vars(args).items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
groundtruth = load_tvqa_plus_annotation(args.gt_path)
if args.no_preproc_pred:
prediction = load_json(args.pred_path)
else:
prediction = load_predictions(args.pred_path, args.gt_path, args.word2idx_path)
word2idx = load_json(args.word2idx_path)
bbox_metrics = compute_att_metrics_using_maskrcnn_voc(prediction["bbox"], groundtruth["bbox"], word2idx)
temporal_metrics = compute_temporal_metrics(prediction["ts_answer"], groundtruth["ts_answer"])
all_metrics = merge_dicts([bbox_metrics, temporal_metrics])
print("QA Acc. {}\nGrd. mAP {}\nTemp. mIoU{}\nASA {}"
.format(all_metrics["qa_acc"], all_metrics["overall_map"],
all_metrics["miou"], all_metrics["ans_span_joint_acc@.5"]))
if args.output_path:
save_json_pretty(all_metrics, args.output_path)
示例4: ml_model
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import merge_dicts [as 別名]
def ml_model(train_tokens, train_pos, y_train, test_tokens, test_pos, y_test):
print("Processing TRAIN SET features...\n")
start = time.time()
train_pragmatic, train_lexical, train_pos, train_sent, train_topic, train_sim = extract_features.get_feature_set\
(train_tokens, train_pos, pragmatic=pragmatic, lexical=lexical,
ngram_list=ngram_list, pos_grams=pos_grams, pos_ngram_list=pos_ngram_list,
sentiment=sentiment, topic=topic, similarity=similarity, word2vec_map=word2vec_map)
end = time.time()
print("Completion time of extracting train models: %.3f s = %.3f min" % ((end - start), (end - start) / 60.0))
print("Processing TEST SET features...\n")
start = time.time()
test_pragmatic, test_lexical, test_pos, test_sent, test_topic, test_sim = extract_features.get_feature_set \
(test_tokens, test_pos, pragmatic=pragmatic, lexical=lexical,
ngram_list=ngram_list, pos_grams=pos_grams, pos_ngram_list=pos_ngram_list,
sentiment=sentiment, topic=topic, similarity=similarity, word2vec_map=word2vec_map)
end = time.time()
print("Completion time of extracting train models: %.3f s = %.3f min" % ((end - start), (end - start) / 60.0))
# Get all features together
all_train_features = [train_pragmatic, train_lexical, train_pos, train_sent, train_topic, train_sim]
all_test_features = [test_pragmatic, test_lexical, test_pos, test_sent, test_topic, test_sim]
# Choose your feature options: you can run on all possible combinations of features
sets_of_features = 6
feature_options = list(itertools.product([False, True], repeat=sets_of_features))
feature_options = feature_options[1:] # skip over the option in which all entries are false
# OR Can select just the features that you want
# From left to right, set to true if you want the feature to be active:
# [Pragmatic, Lexical-grams, POS-grams, Sentiment, LDA topics, Similarity]
# feature_options = [[True, True, True, True, True, True]]
for option in feature_options:
train_features = [{} for _ in range(len(train_tokens))]
test_features = [{} for _ in range(len(test_tokens))]
utils.print_features(option, ['Pragmatic', 'Lexical-grams', 'POS-grams', 'Sentiment', 'LDA topics', 'Similarity'])
# Make a feature selection based on the current feature_option choice
for i, o in enumerate(option):
if o:
for j, example in enumerate(all_train_features[i]):
train_features[j] = utils.merge_dicts(train_features[j], example)
for j, example in enumerate(all_test_features[i]):
test_features[j] = utils.merge_dicts(test_features[j], example)
# Vectorize and scale the features
x_train, x_test = utils.extract_features_from_dict(train_features, test_features)
x_train_scaled = preprocessing.scale(x_train, axis=0)
x_test_scaled = preprocessing.scale(x_test, axis=0)
print("Shape of the x train set (%d, %d)" % (len(x_train_scaled), len(x_train_scaled[0])))
print("Shape of the x test set (%d, %d)" % (len(x_test_scaled), len(x_test_scaled[0])))
# Run the model on the selection of features made
start = time.time()
utils.run_supervised_learning_models(x_train_scaled, y_train, x_test_scaled, y_test)
end = time.time()
print("Completion time of the Linear SVM model: %.3f s = %.3f min" % ((end - start), (end - start) / 60.0))
示例5: setup_order_place
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import merge_dicts [as 別名]
def setup_order_place(kiteconnect,
variety,
product,
order_type,
diff_constant=0.01,
price_diff=1,
bo_price_diff=1,
price=None,
validity=None,
disclosed_quantity=None,
trigger_price=None,
squareoff=None,
stoploss=None,
trailing_stoploss=None,
tag="itest"):
"""Place an order with custom fields enabled. Prices are calculated from live ltp and offset based
on `price_diff` and `diff_constant`. All BO specific fields prices are diffed by `bo_price_diff`"""
updated_params = utils.merge_dicts(params, {
"product": product,
"variety": variety,
"order_type": order_type
})
# NOT WORKING CURRENTLY
# Raises exception since no price set
# with pytest.raises(ex.InputException):
# kiteconnect.place_order(**updated_params)
if price or trigger_price:
symbol = params["exchange"] + ":" + params["tradingsymbol"]
ltp = kiteconnect.ltp(symbol)
# Subtract last price with diff_constant %
diff = ltp[symbol]["last_price"] * diff_constant
round_off_decimal = diff % price_diff if price_diff > 0 else 0
base_price = ltp[symbol]["last_price"] - (diff - round_off_decimal)
if price and trigger_price:
updated_params["price"] = base_price
updated_params["trigger_price"] = base_price - price_diff
elif price:
updated_params["price"] = base_price
elif trigger_price:
updated_params["trigger_price"] = base_price
if stoploss:
updated_params["stoploss"] = bo_price_diff
if squareoff:
updated_params["squareoff"] = bo_price_diff
if trailing_stoploss:
updated_params["trailing_stoploss"] = bo_price_diff
order_id = kiteconnect.place_order(**updated_params)
# delay order fetch so order is not in received state
time.sleep(0.5)
order = kiteconnect.order_history(order_id)
return (updated_params, order_id, order)