當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.load_image方法代碼示例

本文整理匯總了Python中utils.load_image方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.load_image方法的具體用法?Python utils.load_image怎麽用?Python utils.load_image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.load_image方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: stylize

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def stylize(args):
    device = torch.device("cuda" if args.cuda else "cpu")

    content_image = utils.load_image(args.content_image, scale=args.content_scale)
    content_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    content_image = content_transform(content_image)
    content_image = content_image.unsqueeze(0).to(device)


    with torch.no_grad():
        style_model = TransformerNet(style_num=args.style_num)
        state_dict = torch.load(args.model)
        style_model.load_state_dict(state_dict)
        style_model.to(device)
        output = style_model(content_image, style_id = [args.style_id]).cpu()

    utils.save_image('output/'+args.output_image+'_style'+str(args.style_id)+'.jpg', output[0]) 
開發者ID:kewellcjj,項目名稱:pytorch-multiple-style-transfer,代碼行數:22,代碼來源:neural_style.py

示例2: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def main():
    parser = build_parser()
    options = parser.parse_args()
    check_opts(options)

    network = options.network_path
    if not os.path.isdir(network):
        parser.error("Network %s does not exist." % network)

    content_image = utils.load_image(options.content)
    reshaped_content_height = (content_image.shape[0] - content_image.shape[0] % 4)
    reshaped_content_width = (content_image.shape[1] - content_image.shape[1] % 4)
    reshaped_content_image = content_image[:reshaped_content_height, :reshaped_content_width, :]
    reshaped_content_image = np.ndarray.reshape(reshaped_content_image, (1,) + reshaped_content_image.shape)

    prediction = ffwd(reshaped_content_image, network)
    utils.save_image(prediction, options.output_path) 
開發者ID:ShafeenTejani,項目名稱:fast-style-transfer,代碼行數:19,代碼來源:stylize_image.py

示例3: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def main():
    parser = build_parser()
    options = parser.parse_args()
    check_opts(options)

    style_image = utils.load_image(options.style)
    style_image = np.ndarray.reshape(style_image, (1,) + style_image.shape)

    content_targets = utils.get_files(options.train_path)
    content_shape = utils.load_image(content_targets[0]).shape

    device = '/gpu:0' if options.use_gpu else '/cpu:0'

    style_transfer = FastStyleTransfer(
        vgg_path=VGG_PATH,
        style_image=style_image,
        content_shape=content_shape,
        content_weight=options.content_weight,
        style_weight=options.style_weight,
        tv_weight=options.style_weight,
        batch_size=options.batch_size,
        device=device)

    for iteration, network, first_image, losses in style_transfer.train(
        content_training_images=content_targets,
        learning_rate=options.learning_rate,
        epochs=options.epochs,
        checkpoint_iterations=options.checkpoint_iterations
    ):
        print_losses(losses)

        saver = tf.train.Saver()
        if (iteration % 100 == 0):
            saver.save(network, opts.save_path + '/fast_style_network.ckpt')

        saver.save(network, opts.save_path + '/fast_style_network.ckpt') 
開發者ID:ShafeenTejani,項目名稱:fast-style-transfer,代碼行數:38,代碼來源:train_network.py

示例4: _load_batch

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def _load_batch(self, image_paths):
        return np.array([utils.load_image(img_path) for j, img_path in enumerate(image_paths)]) 
開發者ID:ShafeenTejani,項目名稱:fast-style-transfer,代碼行數:4,代碼來源:fast_style_transfer.py

示例5: feature_extraction_images

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def feature_extraction_images(model, cores, batch_sz, image_list, output_path):
    """
      Function that extracts the intermediate CNN features
      of each image in a provided image list.

      Args:
        model: CNN network
        cores: CPU cores for the parallel video loading
        batch_sz: batch size fed to the CNN network
        image_list: list of image to extract features
        output_path: path to store video features
    """
    images = [image.strip() for image in open(image_list).readlines()]
    print '\nNumber of images: ', len(images)
    print 'Storage directory: ', output_path
    print 'CPU cores: ', cores
    print 'Batch size: ', batch_sz

    print '\nFeature Extraction Process'
    print '=========================='
    pool = Pool(cores)
    batches = len(images)/batch_sz + 1
    features = np.zeros((len(images), model.final_sz))
    for batch in tqdm(xrange(batches), mininterval=1.0, unit='batches'):

        # load images in parallel
        future = []
        for image in images[batch * batch_sz: (batch+1) * batch_sz]:
            future += [pool.apply_async(load_image, args=[image, model.desired_size])]

        image_tensor = []
        for f in future:
            image_tensor += [f.get()]

        # extract features
        features[int(batch * batch_sz): int((batch + 1) * batch_sz)] = \
            model.extract(np.array(image_tensor), batch_sz)

    # save features
    np.save(os.path.join(output_path, '{}_features'.format(model.net_name)), features) 
開發者ID:MKLab-ITI,項目名稱:intermediate-cnn-features,代碼行數:42,代碼來源:feature_extraction.py

示例6: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def main():

    # parse arguments
    args = parse_args()
    if args is None:
        exit()

    # load content image
    content_image = utils.load_image(args.content, max_size=args.max_size)

    # open session
    soft_config = tf.ConfigProto(allow_soft_placement=True)
    soft_config.gpu_options.allow_growth = True # to deal with large image
    sess = tf.Session(config=soft_config)

    # build the graph
    transformer = style_transfer_tester.StyleTransferTester(session=sess,
                                                            model_path=args.style_model,
                                                            content_image=content_image,
                                                            )
    # execute the graph
    start_time = time.time()
    output_image = transformer.test()
    end_time = time.time()

    # save result
    utils.save_image(output_image, args.output)

    # report execution time
    shape = content_image.shape #(batch, width, height, channel)
    print('Execution time for a %d x %d image : %f msec' % (shape[0], shape[1], 1000.*float(end_time - start_time)/60)) 
開發者ID:hwalsuklee,項目名稱:tensorflow-fast-style-transfer,代碼行數:33,代碼來源:run_test.py

示例7: stylize

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def stylize(args):
    device = torch.device("cuda" if args.cuda else "cpu")

    content_image = utils.load_image(args.content_image, scale=args.content_scale)
    content_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    content_image = content_transform(content_image)
    content_image = content_image.unsqueeze(0).to(device)

    if args.model.endswith(".onnx"):
        output = stylize_onnx_caffe2(content_image, args)
    else:
        with torch.no_grad():
            style_model = TransformerNet()
            state_dict = torch.load(args.model)
            # remove saved deprecated running_* keys in InstanceNorm from the checkpoint
            for k in list(state_dict.keys()):
                if re.search(r'in\d+\.running_(mean|var)$', k):
                    del state_dict[k]
            style_model.load_state_dict(state_dict)
            style_model.to(device)
            if args.export_onnx:
                assert args.export_onnx.endswith(".onnx"), "Export model file should end with .onnx"
                output = torch.onnx._export(style_model, content_image, args.export_onnx).cpu()
            else:
                output = style_model(content_image).cpu()
    utils.save_image(args.output_image, output[0]) 
開發者ID:pytorch,項目名稱:examples,代碼行數:31,代碼來源:neural_style.py

示例8: get_image

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def get_image(self, idx):
        img_filename = os.path.join(self.image_dir, '%06d.jpg'%(idx))
        return utils.load_image(img_filename) 
開發者ID:chonepieceyb,項目名稱:reading-frustum-pointnets-code,代碼行數:5,代碼來源:sunrgbd_data.py

示例9: sample_image_seq

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def sample_image_seq(dataset_name, filename_pattern, max_length, keyframes):
  metadata = DATASET_TO_METADATA[dataset_name]
  im_height = metadata['im_height']
  im_width = metadata['im_width']
  image_seq = np.zeros((max_length, im_height, im_width, 3), dtype=np.float32)
  assert (keyframes.shape[0] == max_length)
  #print('loading images: %s' % filename_pattern)
  for i in xrange(max_length):
    #print('loading images [%02d]: %s' % (i, filename_pattern))
    image_seq[i] = utils.load_image(filename_pattern.replace('*', '%05d' % keyframes[i]))
  return image_seq 
開發者ID:xcyan,項目名稱:eccv18_mtvae,代碼行數:13,代碼來源:h36m_input.py

示例10: stylize

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def stylize(args):
    device = torch.device("cuda" if args.cuda else "cpu")

    content_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))])

    content_image = utils.load_image(args.content_image, scale=args.content_scale)
    content_image = content_transform(content_image)
    content_image = content_image.unsqueeze(0).to(device)

    with torch.no_grad():
        style_model = torch.load(args.model)
        style_model.to(device)
        output = style_model(content_image).cpu()
        utils.save_image(args.output_image, output[0]) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:16,代碼來源:neural_style.py

示例11: __init__

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def __init__(self, content_layer_ids, style_layer_ids, content_images, style_image, session, net, num_epochs,
                 batch_size, content_weight, style_weight, tv_weight, learn_rate, save_path, check_period, test_image,
                 max_size):

        self.net = net
        self.sess = session

        # sort layers info
        self.CONTENT_LAYERS = collections.OrderedDict(sorted(content_layer_ids.items()))
        self.STYLE_LAYERS = collections.OrderedDict(sorted(style_layer_ids.items()))

        # input images
        self.x_list = content_images
        mod = len(content_images) % batch_size
        self.x_list = self.x_list[:-mod]
        self.y_s0 = style_image
        self.content_size = len(self.x_list)

        # parameters for optimization
        self.num_epochs = num_epochs
        self.content_weight = content_weight
        self.style_weight = style_weight
        self.tv_weight = tv_weight
        self.learn_rate = learn_rate
        self.batch_size = batch_size
        self.check_period = check_period

        # path for model to be saved
        self.save_path = save_path

        # image transform network
        self.transform = transform.Transform()
        self.tester = transform.Transform('test')

        # build graph for style transfer
        self._build_graph()

        # test during training
        if test_image is not None:
            self.TEST = True

            # load content image
            self.test_image = utils.load_image(test_image, max_size=max_size)

            # build graph
            self.x_test = tf.placeholder(tf.float32, shape=self.test_image.shape, name='test_input')
            self.xi_test = tf.expand_dims(self.x_test, 0)  # add one dim for batch

            # result image from transform-net
            self.y_hat_test = self.tester.net(
                self.xi_test / 255.0)  # please build graph for train first. tester.net reuses variables.

        else:
            self.TEST = False 
開發者ID:hwalsuklee,項目名稱:tensorflow-fast-style-transfer,代碼行數:56,代碼來源:style_transfer_trainer.py

示例12: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_image [as 別名]
def main():

    # parse arguments
    args = parse_args()
    if args is None:
        exit()

    # initiate VGG19 model
    model_file_path = args.vgg_model + '/' + vgg19.MODEL_FILE_NAME
    vgg_net = vgg19.VGG19(model_file_path)

    # get file list for training
    content_images = utils.get_files(args.trainDB_path)

    # load style image
    style_image = utils.load_image(args.style)

    # create a map for content layers info
    CONTENT_LAYERS = {}
    for layer, weight in zip(args.content_layers,args.content_layer_weights):
        CONTENT_LAYERS[layer] = weight

    # create a map for style layers info
    STYLE_LAYERS = {}
    for layer, weight in zip(args.style_layers, args.style_layer_weights):
        STYLE_LAYERS[layer] = weight

    # open session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # build the graph for train
    trainer = style_transfer_trainer.StyleTransferTrainer(session=sess,
                                                          content_layer_ids=CONTENT_LAYERS,
                                                          style_layer_ids=STYLE_LAYERS,
                                                          content_images=content_images,
                                                          style_image=add_one_dim(style_image),
                                                          net=vgg_net,
                                                          num_epochs=args.num_epochs,
                                                          batch_size=args.batch_size,
                                                          content_weight=args.content_weight,
                                                          style_weight=args.style_weight,
                                                          tv_weight=args.tv_weight,
                                                          learn_rate=args.learn_rate,
                                                          save_path=args.output,
                                                          check_period=args.checkpoint_every,
                                                          test_image=args.test,
                                                          max_size=args.max_size,
                                                          )
    # launch the graph in a session
    trainer.train()

    # close session
    sess.close() 
開發者ID:hwalsuklee,項目名稱:tensorflow-fast-style-transfer,代碼行數:55,代碼來源:run_train.py


注:本文中的utils.load_image方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。