當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.load_config方法代碼示例

本文整理匯總了Python中utils.load_config方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.load_config方法的具體用法?Python utils.load_config怎麽用?Python utils.load_config使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.load_config方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main():
    args = make_args()
    config = configparser.ConfigParser()
    utils.load_config(config, args.config)
    for cmd in args.modify:
        utils.modify_config(config, cmd)
    with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
        logging.config.dictConfig(yaml.load(f))
    model_dir = utils.get_model_dir(config)
    path, step, epoch = utils.train.load_model(model_dir)
    state_dict = torch.load(path, map_location=lambda storage, loc: storage)
    mapper = [(inflection.underscore(name), member()) for name, member in inspect.getmembers(importlib.machinery.SourceFileLoader('', __file__).load_module()) if inspect.isclass(member)]
    path = os.path.join(model_dir, os.path.basename(os.path.splitext(__file__)[0])) + '.xlsx'
    with xlsxwriter.Workbook(path, {'strings_to_urls': False, 'nan_inf_to_errors': True}) as workbook:
        worksheet = workbook.add_worksheet(args.worksheet)
        for j, (key, m) in enumerate(mapper):
            worksheet.write(0, j, key)
            for i, (name, variable) in enumerate(state_dict.items()):
                value = m(name, variable)
                worksheet.write(1 + i, j, value)
            if hasattr(m, 'format'):
                m.format(workbook, worksheet, i, j)
        worksheet.autofilter(0, 0, i, len(mapper) - 1)
        worksheet.freeze_panes(1, 0)
    logging.info(path) 
開發者ID:ruiminshen,項目名稱:yolo2-pytorch,代碼行數:27,代碼來源:variable_stat.py

示例2: test

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def test(exp_name, device, image_id):
    config, _, _, _ = load_config(exp_name)
    net, loss_fn = build_model(config, device, train=False)
    net.load_state_dict(torch.load(get_model_name(config), map_location=device))
    net.set_decode(True)
    train_loader, val_loader = get_data_loader(1, config['use_npy'], geometry=config['geometry'],
                                               frame_range=config['frame_range'])
    net.eval()

    with torch.no_grad():
        num_gt, num_pred, scores, pred_image, pred_match, loss, t_forward, t_nms = \
            eval_one(net, loss_fn, config, train_loader, image_id, device, plot=True)

        TP = (pred_match != -1).sum()
        print("Loss: {:.4f}".format(loss))
        print("Precision: {:.2f}".format(TP/num_pred))
        print("Recall: {:.2f}".format(TP/num_gt))
        print("forward pass time {:.3f}s".format(t_forward))
        print("nms time {:.3f}s".format(t_nms)) 
開發者ID:philip-huang,項目名稱:PIXOR,代碼行數:21,代碼來源:main.py

示例3: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main( _ ):
    args = parser.parse_args()

    # TODO(apply proposed change)
    # shim to reboot if the transport end point is disconnected
    # We will remove this in the next experiment and add it as a background process launched from user data
#     subprocess.call( 
        # "watch -n 300 'bash /home/ubuntu/task-taxonomy-331b/tools/script/reboot_if_disconnected.sh' &>/dev/null &",
        # shell=True
    # )

    print(args)
    # Get available GPUs
    local_device_protos = utils.get_available_devices()
    print( 'Found devices:', [ x.name for x in local_device_protos ] )  
    # set gpu
    if args.gpu_id is not None:
        print( 'using gpu %d' % args.gpu_id )
        os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id )
    else:
        print( 'no gpu specified' )
    # load config and run training
    cfg = utils.load_config( args.cfg_dir, nopause=args.nopause )
    # cfg['num_read_threads'] = 1
    run_training( cfg, args.cfg_dir ) 
開發者ID:StanfordVL,項目名稱:taskonomy,代碼行數:27,代碼來源:transfer.py

示例4: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main( _ ):
    args = parser.parse_args()

    print(args)
    # Get available GPUs
    local_device_protos = utils.get_available_devices()
    print( 'Found devices:', [ x.name for x in local_device_protos ] )  
    # set gpu
    if args.gpu_id is not None:
        print( 'using gpu %d' % args.gpu_id )
        os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id )
    else:
        print( 'no gpu specified' )
    # load config and run training
    cfg = utils.load_config( args.cfg_dir, nopause=args.nopause )
    cfg['task_name'] = args.cfg_dir.split('/')[-1]
    cfg['task_name'] = 'class_selected'
    cfg['num_epochs'] = 1
    run_val_test( cfg ) 
開發者ID:StanfordVL,項目名稱:taskonomy,代碼行數:21,代碼來源:val_test.py

示例5: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main( _ ):
    args = parser.parse_args()
    #task_list = ["autoencoder", "colorization","curvature", "denoise", "edge2d", "edge3d", "ego_motion", "fix_pose", "impainting", "jigsaw", "keypoint2d", "keypoint3d", "non_fixated_pose", "point_match", "reshade", "rgb2depth", "rgb2mist", "rgb2sfnorm", "room_layout", "segment25d", "segment2d", "vanishing_point"]
    #single channel for colorization !!!!!!!!!!!!!!!!!!!!!!!!! COME BACK TO THIS !!!!!!!!!!!!!!!!!!!!!!!!!!!
    #task_list = [ "point_match"]
    task_list = [ "vanishing_point"]

    # Get available GPUs
    local_device_protos = utils.get_available_devices()
    print( 'Found devices:', [ x.name for x in local_device_protos ] )  
    # set GPU id
    if args.gpu_id:
        print( 'using gpu %d' % args.gpu_id )
        os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id )
    else:
        print( 'no gpu specified' )
    
    for task in task_list:
        task_dir = os.path.join(args.cfg_dir, task)
        cfg = utils.load_config( task_dir, nopause=args.nopause )
        root_dir = cfg['root_dir']
        cfg['randomize'] = False
        cfg['num_epochs'] = 1
        run_rand_baseline( args, cfg, task ) 
開發者ID:StanfordVL,項目名稱:taskonomy,代碼行數:26,代碼來源:rand_baseline.py

示例6: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main( _ ):
    args = parser.parse_args()

    print(args)
    # Get available GPUs
    local_device_protos = utils.get_available_devices()
    print( 'Found devices:', [ x.name for x in local_device_protos ] )  
    # set gpu
    if args.gpu_id is not None:
        print( 'using gpu %d' % args.gpu_id )
        os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id )
    else:
        print( 'no gpu specified' )
    # load config and run training
    cfg = utils.load_config( args.cfg_dir, nopause=args.nopause )
    cfg['train_filenames'] = cfg['train_filenames'].replace('task-taxonomy-331b/assets/aws_data', 's3/meta') 
    cfg['num_epochs'] = 6
    cfg['learning_rate_schedule_kwargs' ] = {
            'boundaries': [np.int64(0), np.int64(1800000)], # need to be int64 since global step is...
            'values': [cfg['initial_learning_rate'], cfg['initial_learning_rate']/10]
    }     
    cfg['randomize'] = True

    run_training( cfg, args.cfg_dir ) 
開發者ID:StanfordVL,項目名稱:taskonomy,代碼行數:26,代碼來源:train_3m.py

示例7: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main( _ ):
    args = parser.parse_args()

    print(args)
    # Get available GPUs
    local_device_protos = utils.get_available_devices()
    print( 'Found devices:', [ x.name for x in local_device_protos ] )  
    # set gpu
    if args.gpu_id is not None:
        print( 'using gpu %d' % args.gpu_id )
        os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id )
    else:
        print( 'no gpu specified' )
    # load config and run training
    cfg = utils.load_config( args.cfg_dir, nopause=args.nopause )
    # cfg['num_read_threads'] = 1
    run_training( cfg, args.cfg_dir ) 
開發者ID:StanfordVL,項目名稱:taskonomy,代碼行數:19,代碼來源:chained_transfer.py

示例8: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main( _ ):
    args = parser.parse_args()

    print(args)
    # Get available GPUs
    local_device_protos = utils.get_available_devices()
    print( 'Found devices:', [ x.name for x in local_device_protos ] )  
    # set gpu
    if args.gpu_id is not None:
        print( 'using gpu %d' % args.gpu_id )
        os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id )
    else:
        print( 'no gpu specified' )
    # load config and run training
    cfg = utils.load_config( args.cfg_dir, nopause=args.nopause )
    run_training( cfg, args.cfg_dir ) 
開發者ID:StanfordVL,項目名稱:taskonomy,代碼行數:18,代碼來源:train.py

示例9: evaluate_line

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def evaluate_line():
    config = load_config(FLAGS.config_file)
    logger = get_logger(FLAGS.log_file)
    # limit GPU memory
    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    with open(FLAGS.map_file, "rb") as f:
        char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f)
    with tf.Session(config=tf_config) as sess:
        model = create_model(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_char, logger, False)
        while True:
            # try:
            #     line = input("請輸入測試句子:")
            #     result = ckpt.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag)
            #     print(result)
            # except Exception as e:
            #     logger.info(e)

            line = input("請輸入測試句子:")
            result = model.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag)
            print(result) 
開發者ID:sliderSun,項目名稱:pynlp,代碼行數:23,代碼來源:main.py

示例10: _test_predictors

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def _test_predictors(
    self, predictors, overwrite_cfgs, overwrite_in_channels,
    hwsize,
):
    ''' Make sure predictors run '''

    self.assertGreater(len(predictors), 0)

    in_channels_default = 64

    for name, builder in predictors.items():
        print('Testing {}...'.format(name))
        if name in overwrite_cfgs:
            cfg = load_config(overwrite_cfgs[name])
        else:
            # Use default config if config file is not specified
            cfg = copy.deepcopy(g_cfg)

        in_channels = overwrite_in_channels.get(
            name, in_channels_default)

        fe = builder(cfg, in_channels)

        N, C_in, H, W = 2, in_channels, hwsize, hwsize
        input = torch.rand([N, C_in, H, W], dtype=torch.float32)
        out = fe(input)
        yield input, out, cfg 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:29,代碼來源:test_predictors.py

示例11: test_build_backbones

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def test_build_backbones(self):
        ''' Make sure backbones run '''

        self.assertGreater(len(registry.BACKBONES), 0)

        for name, backbone_builder in registry.BACKBONES.items():
            print('Testing {}...'.format(name))
            if name in BACKBONE_CFGS:
                cfg = load_config(BACKBONE_CFGS[name])
            else:
                # Use default config if config file is not specified
                cfg = copy.deepcopy(g_cfg)
            backbone = backbone_builder(cfg)

            # make sures the backbone has `out_channels`
            self.assertIsNotNone(
                getattr(backbone, 'out_channels', None),
                'Need to provide out_channels for backbone {}'.format(name)
            )

            N, C_in, H, W = 2, 3, 224, 256
            input = torch.rand([N, C_in, H, W], dtype=torch.float32)
            out = backbone(input)
            for cur_out in out:
                self.assertEqual(
                    cur_out.shape[:2],
                    torch.Size([N, backbone.out_channels])
                ) 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:30,代碼來源:test_backbones.py

示例12: _test_feature_extractors

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def _test_feature_extractors(
    self, extractors, overwrite_cfgs, overwrite_in_channels
):
    ''' Make sure roi box feature extractors run '''

    self.assertGreater(len(extractors), 0)

    in_channels_default = 64

    for name, builder in extractors.items():
        print('Testing {}...'.format(name))
        if name in overwrite_cfgs:
            cfg = load_config(overwrite_cfgs[name])
        else:
            # Use default config if config file is not specified
            cfg = copy.deepcopy(g_cfg)

        in_channels = overwrite_in_channels.get(
            name, in_channels_default)

        fe = builder(cfg, in_channels)
        self.assertIsNotNone(
            getattr(fe, 'out_channels', None),
            'Need to provide out_channels for feature extractor {}'.format(name)
        )

        N, C_in, H, W = 2, in_channels, 24, 32
        input = torch.rand([N, C_in, H, W], dtype=torch.float32)
        bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]]
        img_size = [384, 512]
        box_list = BoxList(bboxes, img_size, "xyxy")
        out = fe([input], [box_list] * N)
        self.assertEqual(
            out.shape[:2],
            torch.Size([N * len(bboxes), fe.out_channels])
        ) 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:38,代碼來源:test_feature_extractors.py

示例13: test_build_rpn_heads

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def test_build_rpn_heads(self):
        ''' Make sure rpn heads run '''

        self.assertGreater(len(registry.RPN_HEADS), 0)

        in_channels = 64
        num_anchors = 10

        for name, builder in registry.RPN_HEADS.items():
            print('Testing {}...'.format(name))
            if name in RPN_CFGS:
                cfg = load_config(RPN_CFGS[name])
            else:
                # Use default config if config file is not specified
                cfg = copy.deepcopy(g_cfg)

            rpn = builder(cfg, in_channels, num_anchors)

            N, C_in, H, W = 2, in_channels, 24, 32
            input = torch.rand([N, C_in, H, W], dtype=torch.float32)
            LAYERS = 3
            out = rpn([input] * LAYERS)
            self.assertEqual(len(out), 2)
            logits, bbox_reg = out
            for idx in range(LAYERS):
                self.assertEqual(
                    logits[idx].shape,
                    torch.Size([
                        input.shape[0], num_anchors,
                        input.shape[2], input.shape[3],
                    ])
                )
                self.assertEqual(
                    bbox_reg[idx].shape,
                    torch.Size([
                        logits[idx].shape[0], num_anchors * 4,
                        logits[idx].shape[2], logits[idx].shape[3],
                    ]),
                ) 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:41,代碼來源:test_rpn_heads.py

示例14: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main():
    args = make_args()
    config = configparser.ConfigParser()
    utils.load_config(config, args.config)
    for cmd in args.modify:
        utils.modify_config(config, cmd)
    with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
        logging.config.dictConfig(yaml.load(f))
    model_dir = utils.get_model_dir(config)
    model = onnx.load(model_dir + '.onnx')
    onnx.checker.check_model(model)
    init_net, predict_net = onnx_caffe2.backend.Caffe2Backend.onnx_graph_to_caffe2_net(model.graph, device='CPU')
    onnx_caffe2.helper.save_caffe2_net(init_net, os.path.join(model_dir, 'init_net.pb'))
    onnx_caffe2.helper.save_caffe2_net(predict_net, os.path.join(model_dir, 'predict_net.pb'), output_txt=True)
    logging.info(model_dir) 
開發者ID:ruiminshen,項目名稱:yolo2-pytorch,代碼行數:17,代碼來源:convert_onnx_caffe2.py

示例15: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load_config [as 別名]
def main():
    args = make_args()
    config = configparser.ConfigParser()
    utils.load_config(config, args.config)
    for cmd in args.modify:
        utils.modify_config(config, cmd)
    with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
        logging.config.dictConfig(yaml.load(f))
    torch.manual_seed(args.seed)
    model_dir = utils.get_model_dir(config)
    init_net = caffe2_pb2.NetDef()
    with open(os.path.join(model_dir, 'init_net.pb'), 'rb') as f:
        init_net.ParseFromString(f.read())
    predict_net = caffe2_pb2.NetDef()
    with open(os.path.join(model_dir, 'predict_net.pb'), 'rb') as f:
        predict_net.ParseFromString(f.read())
    p = workspace.Predictor(init_net, predict_net)
    height, width = tuple(map(int, config.get('image', 'size').split()))
    tensor = torch.randn(1, 3, height, width)
    # Checksum
    output = p.run([tensor.numpy()])
    for key, a in [
        ('tensor', tensor.cpu().numpy()),
        ('output', output[0]),
    ]:
        print('\t'.join(map(str, [key, a.shape, utils.abs_mean(a), hashlib.md5(a.tostring()).hexdigest()]))) 
開發者ID:ruiminshen,項目名稱:yolo2-pytorch,代碼行數:28,代碼來源:checksum_caffe2.py


注:本文中的utils.load_config方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。