當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.load方法代碼示例

本文整理匯總了Python中utils.load方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.load方法的具體用法?Python utils.load怎麽用?Python utils.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: parse_cycles

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def parse_cycles():
    logging.debug(locals())
    assert len(args.add_width) == len(args.add_layers) == len(args.dropout_rate) == len(args.num_to_keep)
    assert len(args.add_width) == len(args.num_morphs) == len(args.grace_epochs) == len(args.epochs)
    cycles = []
    for i in range(len(args.add_width)):
        try_load = args.try_load and i > 0
        net_layers = args.layers + int(args.add_layers[i])
        net_init_c = args.init_channels + int(args.add_width[i])
        if len(cycles) > 0 and try_load:
            if cycles[-1].net_layers != net_layers or cycles[-1].net_init_c != net_init_c:
                try_load = False
        cycles.append(Cycle(
            num=i,
            net_layers=args.layers + int(args.add_layers[i]),
            net_init_c=args.init_channels + int(args.add_width[i]),
            net_dropout=float(args.dropout_rate[i]),
            ops_keep=args.num_to_keep[i],
            epochs=args.epochs[i],
            grace_epochs=args.grace_epochs[i] if not args.test else 0,
            morphs=args.num_morphs[i],
            init_morphed=try_load,
            load=try_load,
            is_last=(i == len(args.num_to_keep) - 1)))
    return cycles 
開發者ID:antoyang,項目名稱:NAS-Benchmark,代碼行數:27,代碼來源:train_search.py

示例2: evaluate

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def evaluate(args, dataset, model, instruments):
    perfs = list()
    model.eval()
    with torch.no_grad():
        for example in dataset:
            print("Evaluating " + example["mix"])

            # Load source references in their original sr and channel number
            target_sources = np.stack([utils.load(example[instrument], sr=None, mono=False)[0].T for instrument in instruments])

            # Predict using mixture
            pred_sources = predict_song(args, example["mix"], model)
            pred_sources = np.stack([pred_sources[key].T for key in instruments])

            # Evaluate
            SDR, ISR, SIR, SAR, _ = museval.metrics.bss_eval(target_sources, pred_sources)
            song = {}
            for idx, name in enumerate(instruments):
                song[name] = {"SDR" : SDR[idx], "ISR" : ISR[idx], "SIR" : SIR[idx], "SAR" : SAR[idx]}
            perfs.append(song)

    return perfs 
開發者ID:f90,項目名稱:Wave-U-Net-Pytorch,代碼行數:24,代碼來源:test.py

示例3: _get_annotation

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def _get_annotation(self, label_path: str) -> dict:
        boxes = []
        texts = []
        ignores = []
        with open(label_path, encoding='utf-8', mode='r') as f:
            for line in f.readlines():
                params = line.strip().strip('\ufeff').strip('\xef\xbb\xbf').split(',')
                try:
                    box = order_points_clockwise(np.array(list(map(float, params[:8]))).reshape(-1, 2))
                    if cv2.contourArea(box) > 0:
                        boxes.append(box)
                        label = params[8]
                        texts.append(label)
                        ignores.append(label in self.ignore_tags)
                except:
                    print('load label failed on {}'.format(label_path))
        data = {
            'text_polys': np.array(boxes),
            'texts': texts,
            'ignore_tags': ignores,
        }
        return data 
開發者ID:WenmuZhou,項目名稱:DBNet.pytorch,代碼行數:24,代碼來源:dataset.py

示例4: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU found!')
        sys.exit(1)
    
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    cudnn.enabled = True
    cudnn.benchmark = True
    
    logging.info("Args = %s", args)
    
    _, model_state_dict, epoch, step, optimizer_state_dict, best_acc_top1 = utils.load(args.output_dir)
    train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_imagenet(model_state_dict, optimizer_state_dict, epoch=epoch-1)

    while epoch < args.epochs:
        scheduler.step()
        logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
        train_acc, train_obj, step = train(train_queue, model, optimizer, step, train_criterion)
        logging.info('train_acc %f', train_acc)
        valid_acc_top1, valid_acc_top5, valid_obj = valid(valid_queue, model, eval_criterion)
        logging.info('valid_acc_top1 %f', valid_acc_top1)
        logging.info('valid_acc_top5 %f', valid_acc_top5)

        epoch += 1
        is_best = False
        if valid_acc_top1 > best_acc_top1:
            best_acc_top1 = valid_acc_top1
            is_best = True
        utils.save(args.output_dir, args, model, epoch, step, optimizer, best_acc_top1, is_best) 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:34,代碼來源:train_imagenet.py

示例5: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU found!')
        sys.exit(1)
    
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    cudnn.enabled = True
    cudnn.benchmark = False
    cudnn.deterministic = True
    
    args.steps = int(np.ceil(50000 / args.batch_size)) * args.epochs
    logging.info("Args = %s", args)
    
    _, model_state_dict, epoch, step, optimizer_state_dict, best_acc_top1 = utils.load(args.output_dir)
    build_fn = get_builder(args.dataset)
    train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_fn(model_state_dict, optimizer_state_dict, epoch=epoch-1)

    while epoch < args.epochs:
        scheduler.step()
        logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
        train_acc, train_obj, step = train(train_queue, model, optimizer, step, train_criterion)
        logging.info('train_acc %f', train_acc)
        valid_acc_top1, valid_obj = valid(valid_queue, model, eval_criterion)
        logging.info('valid_acc %f', valid_acc_top1)
        epoch += 1
        is_best = False
        if valid_acc_top1 > best_acc_top1:
            best_acc_top1 = valid_acc_top1
            is_best = True
        utils.save(args.output_dir, args, model, epoch, step, optimizer, best_acc_top1, is_best) 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:36,代碼來源:test_cifar.py

示例6: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU found!')
        sys.exit(1)
    
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    cudnn.enabled = True
    cudnn.benchmark = True
    
    args.steps = int(np.ceil(50000 / args.batch_size)) * args.epochs
    logging.info("Args = %s", args)
    
    _, model_state_dict, epoch, step, optimizer_state_dict, best_acc_top1 = utils.load(args.output_dir)
    build_fn = get_builder(args.dataset)
    train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_fn(model_state_dict, optimizer_state_dict, epoch=epoch-1)

    while epoch < args.epochs:
        scheduler.step()
        logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
        train_acc, train_obj, step = train(train_queue, model, optimizer, step, train_criterion)
        logging.info('train_acc %f', train_acc)
        valid_acc_top1, valid_obj = valid(valid_queue, model, eval_criterion)
        logging.info('valid_acc %f', valid_acc_top1)
        epoch += 1
        is_best = False
        if valid_acc_top1 > best_acc_top1:
            best_acc_top1 = valid_acc_top1
            is_best = True
        utils.save(args.output_dir, args, model, epoch, step, optimizer, best_acc_top1, is_best) 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:34,代碼來源:train_cifar.py

示例7: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()
  utils.load(model, args.model_path)

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  _, test_transform = utils._data_transforms_cifar10(args)
  test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

  test_queue = torch.utils.data.DataLoader(
      test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  model.drop_path_prob = args.drop_path_prob
  test_acc, test_obj = infer(test_queue, model, criterion)
  logging.info('test_acc %f', test_acc) 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:35,代碼來源:test.py

示例8: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU found!')
        sys.exit(1)
    
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    cudnn.enabled = True
    cudnn.benchmark = False
    cudnn.deterministic = True
    
    logging.info("Args = %s", args)
    
    _, model_state_dict, epoch, step, optimizer_state_dict, best_acc_top1 = utils.load(args.output_dir)
    train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_imagenet(model_state_dict, optimizer_state_dict, epoch=epoch-1)

    while epoch < args.epochs:
        scheduler.step()
        logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
        train_acc, train_obj, step = train(train_queue, model, optimizer, step, train_criterion)
        logging.info('train_acc %f', train_acc)
        valid_acc_top1, valid_acc_top5, valid_obj = valid(valid_queue, model, eval_criterion)
        logging.info('valid_acc_top1 %f', valid_acc_top1)
        logging.info('valid_acc_top5 %f', valid_acc_top5)

        epoch += 1
        is_best = False
        if valid_acc_top1 > best_acc_top1:
            best_acc_top1 = valid_acc_top1
            is_best = True
        utils.save(args.output_dir, args, model, epoch, step, optimizer, best_acc_top1, is_best) 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:35,代碼來源:train_imagenet.py

示例9: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU found!')
        sys.exit(1)
    
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    cudnn.benchmark = False
    cudnn.deterministic = True
    torch.cuda.manual_seed(args.seed)
    
    logging.info("Args = %s", args)
    
    _, model_state_dict, epoch, step, optimizer_state_dict, best_acc_top1 = utils.load(args.output_dir)
    train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_imagenet(model_state_dict, optimizer_state_dict, epoch=epoch-1)

    while epoch < args.epochs:
        scheduler.step()
        logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
        train_acc, train_obj, step = train(train_queue, model, optimizer, step, train_criterion)
        logging.info('train_acc %f', train_acc)
        valid_acc_top1, valid_acc_top5, valid_obj = valid(valid_queue, model, eval_criterion)
        logging.info('valid_acc_top1 %f', valid_acc_top1)
        logging.info('valid_acc_top5 %f', valid_acc_top5)

        epoch += 1
        is_best = False
        if valid_acc_top1 > best_acc_top1:
            best_acc_top1 = valid_acc_top1
            is_best = True
        utils.save(args.output_dir, args, model, epoch, step, optimizer, best_acc_top1, is_best) 
開發者ID:antoyang,項目名稱:NAS-Benchmark,代碼行數:34,代碼來源:train_imagenet.py

示例10: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def main():
    if not torch.cuda.is_available():
        logging.info('No GPU found!')
        sys.exit(1)
    
    np.random.seed(args.seed)
    cudnn.benchmark = False
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    torch.cuda.manual_seed(args.seed)
    
    args.steps = int(np.ceil(50000 / args.batch_size)) * args.epochs
    logging.info("Args = %s", args)
    
    _, model_state_dict, epoch, step, optimizer_state_dict, best_acc_top1 = utils.load(args.output_dir)
    build_fn = get_builder(args.dataset)
    train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_fn(model_state_dict, optimizer_state_dict, epoch=epoch-1)

    while epoch < args.epochs:
        scheduler.step()
        logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
        train_acc, train_obj, step = train(train_queue, model, optimizer, step, train_criterion)
        logging.info('train_acc %f', train_acc)
        valid_acc_top1, valid_obj = valid(valid_queue, model, eval_criterion)
        logging.info('valid_acc %f', valid_acc_top1)
        epoch += 1
        is_best = False
        if valid_acc_top1 > best_acc_top1:
            best_acc_top1 = valid_acc_top1
            is_best = True
        utils.save(args.output_dir, args, model, epoch, step, optimizer, best_acc_top1, is_best) 
開發者ID:antoyang,項目名稱:NAS-Benchmark,代碼行數:33,代碼來源:train_cifar.py

示例11: test_examples

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def test_examples(platforms, path):
    #: Load
    dir_path = os.path.abspath(os.path.split(os.path.dirname(__file__))[0])
    enaml_file = os.path.join(dir_path, 'examples', os.path.normpath(path))

    #: Run for each platform
    for platform in platforms:
        app = MockApplication.instance(platform)

        with enaml.imports():
            with open(enaml_file, 'rb') as f:
                ContentView = load(f.read())

        app.view = ContentView()
        app.run() 
開發者ID:codelv,項目名稱:enaml-native,代碼行數:17,代碼來源:test_examples.py

示例12: test_demo_app

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def test_demo_app():
    with enaml.imports():
        with open('examples/demo/view.enaml', 'rb') as f:
            ContentView = load(f.read())
        app = MockApplication.instance('android')
        app.view = ContentView()
        app.run() 
開發者ID:codelv,項目名稱:enaml-native,代碼行數:9,代碼來源:test_examples.py

示例13: test_playground_app

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def test_playground_app():
    with enaml.imports():
        with open('examples/playground/view.enaml', 'rb') as f:
            ContentView = load(f.read())
        app = MockApplication.instance('android')
        app.view = ContentView()
        app.run() 
開發者ID:codelv,項目名稱:enaml-native,代碼行數:9,代碼來源:test_examples.py

示例14: getMUSDBHQ

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def getMUSDBHQ(database_path):
    subsets = list()

    for subset in ["train", "test"]:
        print("Loading " + subset + " set...")
        tracks = glob.glob(os.path.join(database_path, subset, "*"))
        samples = list()

        # Go through tracks
        for track_folder in sorted(tracks):
            # Skip track if mixture is already written, assuming this track is done already
            example = dict()
            for stem in ["mix", "bass", "drums", "other", "vocals"]:
                filename = stem if stem != "mix" else "mixture"
                audio_path = os.path.join(track_folder, filename + ".wav")
                example[stem] = audio_path

            # Add other instruments to form accompaniment
            acc_path = os.path.join(track_folder, "accompaniment.wav")

            if not os.path.exists(acc_path):
                print("Writing accompaniment to " + track_folder)
                stem_audio = []
                for stem in ["bass", "drums", "other"]:
                    audio, sr = load(example[stem], sr=None, mono=False)
                    stem_audio.append(audio)
                acc_audio = np.clip(sum(stem_audio), -1.0, 1.0)
                write_wav(acc_path, acc_audio, sr)

            example["accompaniment"] = acc_path

            samples.append(example)

        subsets.append(samples)

    return subsets 
開發者ID:f90,項目名稱:Wave-U-Net-Pytorch,代碼行數:38,代碼來源:data.py

示例15: load_data

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import load [as 別名]
def load_data(self, data_path: str) -> list:
        """
        從json文件中讀取出 文本行的坐標和gt,字符的坐標和gt
        :param data_path:
        :return:
        """
        data_list = []
        for path in data_path:
            content = load(path)
            for gt in tqdm(content['data_list'], desc='read file {}'.format(path)):
                img_path = os.path.join(content['data_root'], gt['img_name'])
                polygons = []
                texts = []
                illegibility_list = []
                language_list = []
                for annotation in gt['annotations']:
                    if len(annotation['polygon']) == 0 or len(annotation['text']) == 0:
                        continue
                    if len(annotation['text']) > 1 and self.expand_one_char:
                        annotation['polygon'] = expand_polygon(annotation['polygon'])
                    polygons.append(annotation['polygon'])
                    texts.append(annotation['text'])
                    illegibility_list.append(annotation['illegibility'])
                    language_list.append(annotation['language'])
                    if self.load_char_annotation:
                        for char_annotation in annotation['chars']:
                            if len(char_annotation['polygon']) == 0 or len(char_annotation['char']) == 0:
                                continue
                            polygons.append(char_annotation['polygon'])
                            texts.append(char_annotation['char'])
                            illegibility_list.append(char_annotation['illegibility'])
                            language_list.append(char_annotation['language'])
                data_list.append({'img_path': img_path, 'img_name': gt['img_name'], 'text_polys': np.array(polygons),
                                  'texts': texts, 'ignore_tags': illegibility_list})
        return data_list 
開發者ID:WenmuZhou,項目名稱:DBNet.pytorch,代碼行數:37,代碼來源:dataset.py


注:本文中的utils.load方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。