本文整理匯總了Python中utils.image.get_affine_transform方法的典型用法代碼示例。如果您正苦於以下問題:Python image.get_affine_transform方法的具體用法?Python image.get_affine_transform怎麽用?Python image.get_affine_transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils.image
的用法示例。
在下文中一共展示了image.get_affine_transform方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pre_process
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def pre_process(image, cfg=None, scale=1, meta=None):
height, width = image.shape[0:2]
new_height = int(height * scale)
new_width = int(width * scale)
mean = np.array(cfg.DATASET.MEAN, dtype=np.float32).reshape(1, 1, 3)
std = np.array(cfg.DATASET.STD, dtype=np.float32).reshape(1, 1, 3)
inp_height, inp_width = cfg.MODEL.INPUT_H, cfg.MODEL.INPUT_W
c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
s = max(height, width) * 1.0
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
resized_image = cv2.resize(image, (new_width, new_height))
inp_image = cv2.warpAffine(
resized_image, trans_input, (inp_width, inp_height),
flags=cv2.INTER_LINEAR)
inp_image = ((inp_image / 255. - mean) / std).astype(np.float32)
images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width)
images = torch.from_numpy(images)
meta = {'c': c, 's': s,
'out_height': inp_height // cfg.MODEL.DOWN_RATIO,
'out_width': inp_width // cfg.MODEL.DOWN_RATIO}
return images, meta
示例2: preprocess
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def preprocess(self, image, scale=1, meta=None):
height, width = image.shape[0:2]
new_height = int(height * scale)
new_width = int(width * scale)
mean = np.array(self.cfg.DATASET.MEAN, dtype=np.float32).reshape(1, 1, 3)
std = np.array(self.cfg.DATASET.STD, dtype=np.float32).reshape(1, 1, 3)
inp_height, inp_width = self.cfg.MODEL.INPUT_H, self.cfg.MODEL.INPUT_W
c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
s = max(height, width) * 1.0
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
resized_image = cv2.resize(image, (new_width, new_height))
inp_image = cv2.warpAffine(
resized_image, trans_input, (inp_width, inp_height),
flags=cv2.INTER_LINEAR)
inp_image = ((inp_image / 255. - mean) / std).astype(np.float32)
images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width)
meta = {'c': c, 's': s,
'out_height': inp_height // self.cfg.MODEL.DOWN_RATIO,
'out_width': inp_width // self.cfg.MODEL.DOWN_RATIO}
return np.ascontiguousarray(images), meta
示例3: pre_process
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def pre_process(self, image, scale, calib=None):
height, width = image.shape[0:2]
inp_height, inp_width = self.opt.input_h, self.opt.input_w
c = np.array([width / 2, height / 2], dtype=np.float32)
if self.opt.keep_res:
s = np.array([inp_width, inp_height], dtype=np.int32)
else:
s = np.array([width, height], dtype=np.int32)
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
resized_image = image #cv2.resize(image, (width, height))
inp_image = cv2.warpAffine(resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR)
inp_image = (inp_image.astype(np.float32) / 255.)
inp_image = (inp_image - self.mean) / self.std
images = inp_image.transpose(2, 0, 1)[np.newaxis, ...]
calib = np.array(calib, dtype=np.float32) if calib is not None else self.calib
images = nd.array(images)
meta = {'c': c, 's': s,
'out_height': inp_height // self.opt.down_ratio,
'out_width': inp_width // self.opt.down_ratio,
'calib': calib}
return images, meta
示例4: demo_image
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def demo_image(image, model, opt):
s = max(image.shape[0], image.shape[1]) * 1.0
c = np.array([image.shape[1] / 2., image.shape[0] / 2.], dtype=np.float32)
trans_input = get_affine_transform(
c, s, 0, [opt.input_w, opt.input_h])
inp = cv2.warpAffine(image, trans_input, (opt.input_w, opt.input_h),
flags=cv2.INTER_LINEAR)
inp = (inp / 255. - mean) / std
inp = inp.transpose(2, 0, 1)[np.newaxis, ...].astype(np.float32)
inp = torch.from_numpy(inp).to(opt.device)
out = model(inp)[-1]
pred = get_preds(out['hm'].detach().cpu().numpy())[0]
pred = transform_preds(pred, c, s, (opt.output_w, opt.output_h))
pred_3d = get_preds_3d(out['hm'].detach().cpu().numpy(),
out['depth'].detach().cpu().numpy())[0]
debugger = Debugger()
debugger.add_img(image)
debugger.add_point_2d(pred, (255, 0, 0))
debugger.add_point_3d(pred_3d, 'b')
debugger.show_all_imgs(pause=False)
debugger.show_3d()
示例5: pre_process
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def pre_process(self, image, scale, meta=None):
height, width = image.shape[0:2]
new_height = int(height * scale)
new_width = int(width * scale)
if self.cfg.TEST.FIX_RES:
inp_height, inp_width = self.cfg.MODEL.INPUT_H, self.cfg.MODEL.INPUT_W
c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
s = max(height, width) * 1.0
else:
inp_height = (new_height | self.cfg.MODEL.PAD) + 1
inp_width = (new_width | self.cfg.MODEL.PAD) + 1
c = np.array([new_width // 2, new_height // 2], dtype=np.float32)
s = np.array([inp_width, inp_height], dtype=np.float32)
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
resized_image = cv2.resize(image, (new_width, new_height))
inp_image = cv2.warpAffine(
resized_image, trans_input, (inp_width, inp_height),
flags=cv2.INTER_LINEAR)
inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32)
images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width)
if self.cfg.TEST.FLIP_TEST:
images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
images = torch.from_numpy(images)
meta = {'c': c, 's': s,
'out_height': inp_height // self.cfg.MODEL.DOWN_RATIO,
'out_width': inp_width // self.cfg.MODEL.DOWN_RATIO}
return images, meta
示例6: pre_process
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def pre_process(self, image, scale, meta=None):
height, width = image.shape[0:2]
new_height = int(height * scale)
new_width = int(width * scale)
if self.opt.fix_res:
inp_height, inp_width = self.opt.input_h, self.opt.input_w
c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
s = max(height, width) * 1.0
else:
inp_height = (new_height | self.opt.pad) + 1
inp_width = (new_width | self.opt.pad) + 1
c = np.array([new_width // 2, new_height // 2], dtype=np.float32)
s = np.array([inp_width, inp_height], dtype=np.float32)
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
resized_image = cv2.resize(image, (new_width, new_height))
inp_image = cv2.warpAffine(
resized_image, trans_input, (inp_width, inp_height),
flags=cv2.INTER_LINEAR)
inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32)
images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width)
if self.opt.flip_test:
images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
images = nd.array(images)
meta = {'c': c, 's': s,
'out_height': inp_height // self.opt.down_ratio,
'out_width': inp_width // self.opt.down_ratio}
return images, meta
示例7: pre_process
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def pre_process(self, image, scale, calib=None):
height, width = image.shape[0:2]
inp_height, inp_width = self.opt.input_h, self.opt.input_w
c = np.array([width / 2, height / 2], dtype=np.float32)
if self.opt.keep_res:
s = np.array([inp_width, inp_height], dtype=np.int32)
else:
s = np.array([width, height], dtype=np.int32)
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
resized_image = image #cv2.resize(image, (width, height))
inp_image = cv2.warpAffine(
resized_image, trans_input, (inp_width, inp_height),
flags=cv2.INTER_LINEAR)
inp_image = (inp_image.astype(np.float32) / 255.)
inp_image = (inp_image - self.mean) / self.std
images = inp_image.transpose(2, 0, 1)[np.newaxis, ...]
calib = np.array(calib, dtype=np.float32) if calib is not None \
else self.calib
images = torch.from_numpy(images)
meta = {'c': c, 's': s,
'out_height': inp_height // self.opt.down_ratio,
'out_width': inp_width // self.opt.down_ratio,
'calib': calib}
return images, meta
示例8: pre_process
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def pre_process(self, image, scale, meta=None):
height, width = image.shape[0:2]
new_height = int(height * scale)
new_width = int(width * scale)
if self.opt.fix_res:
inp_height, inp_width = self.opt.input_h, self.opt.input_w
c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
s = max(height, width) * 1.0
else:
inp_height = (new_height | self.opt.pad) + 1
inp_width = (new_width | self.opt.pad) + 1
c = np.array([new_width // 2, new_height // 2], dtype=np.float32)
s = np.array([inp_width, inp_height], dtype=np.float32)
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
resized_image = cv2.resize(image, (new_width, new_height))
inp_image = cv2.warpAffine(
resized_image, trans_input, (inp_width, inp_height),
flags=cv2.INTER_LINEAR)
inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32)
images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width)
if self.opt.flip_test:
images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
images = torch.from_numpy(images)
meta = {'c': c, 's': s,
'out_height': inp_height // self.opt.down_ratio,
'out_width': inp_width // self.opt.down_ratio}
return images, meta
示例9: __getitem__
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def __getitem__(self, index):
if index < 10 and self.split == 'train':
self.idxs = np.random.choice(
self.num_samples, self.num_samples, replace=False)
img = self._load_image(index)
gt_3d, pts, c, s = self._get_part_info(index)
r = 0
s = np.array([s, s])
s = adjust_aspect_ratio(s, self.aspect_ratio, self.opt.fit_short_side)
trans_input = get_affine_transform(
c, s, r, [self.opt.input_h, self.opt.input_w])
inp = cv2.warpAffine(img, trans_input, (self.opt.input_h, self.opt.input_w),
flags=cv2.INTER_LINEAR)
inp = (inp.astype(np.float32) / 256. - self.mean) / self.std
inp = inp.transpose(2, 0, 1)
trans_output = get_affine_transform(
c, s, r, [self.opt.output_h, self.opt.output_w])
out = np.zeros((self.num_joints, self.opt.output_h, self.opt.output_w),
dtype=np.float32)
reg_target = np.zeros((self.num_joints, 1), dtype=np.float32)
reg_ind = np.zeros((self.num_joints), dtype=np.int64)
reg_mask = np.zeros((self.num_joints), dtype=np.uint8)
pts_crop = np.zeros((self.num_joints, 2), dtype=np.int32)
for i in range(self.num_joints):
pt = affine_transform(pts[i, :2], trans_output).astype(np.int32)
if pt[0] >= 0 and pt[1] >=0 and pt[0] < self.opt.output_w \
and pt[1] < self.opt.output_h:
pts_crop[i] = pt
out[i] = draw_gaussian(out[i], pt, self.opt.hm_gauss)
reg_target[i] = pts[i, 2] / s[0] # assert not fit_short
reg_ind[i] = pt[1] * self.opt.output_w * self.num_joints + \
pt[0] * self.num_joints + i # note transposed
reg_mask[i] = 1
meta = {'index' : self.idxs[index], 'center' : c, 'scale' : s,
'gt_3d': gt_3d, 'pts_crop': pts_crop}
ret = {'input': inp, 'target': out, 'meta': meta,
'reg_target': reg_target, 'reg_ind': reg_ind, 'reg_mask': reg_mask}
return ret
示例10: __getitem__
# 需要導入模塊: from utils import image [as 別名]
# 或者: from utils.image import get_affine_transform [as 別名]
def __getitem__(self, index):
img = self._load_image(index)
_, pts, c, s = self._get_part_info(index)
r = 0
if self.split == 'train':
sf = self.opt.scale
rf = self.opt.rotate
s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
r = np.clip(np.random.randn()*rf, -rf*2, rf*2) \
if np.random.random() <= 0.6 else 0
s = min(s, max(img.shape[0], img.shape[1])) * 1.0
s = np.array([s, s])
s = adjust_aspect_ratio(s, self.aspect_ratio, self.opt.fit_short_side)
flipped = (self.split == 'train' and np.random.random() < self.opt.flip)
if flipped:
img = img[:, ::-1, :]
c[0] = img.shape[1] - 1 - c[0]
pts[:, 0] = img.shape[1] - 1 - pts[:, 0]
for e in self.shuffle_ref:
pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy()
trans_input = get_affine_transform(
c, s, r, [self.opt.input_h, self.opt.input_w])
inp = cv2.warpAffine(img, trans_input, (self.opt.input_h, self.opt.input_w),
flags=cv2.INTER_LINEAR)
inp = (inp.astype(np.float32) / 256. - self.mean) / self.std
inp = inp.transpose(2, 0, 1)
trans_output = get_affine_transform(
c, s, r, [self.opt.output_h, self.opt.output_w])
out = np.zeros((self.num_joints, self.opt.output_h, self.opt.output_w),
dtype=np.float32)
pts_crop = np.zeros((self.num_joints, 2), dtype=np.int32)
for i in range(self.num_joints):
if pts[i, 0] > 0 or pts[i, 1] > 0:
pts_crop[i] = affine_transform(pts[i], trans_output)
out[i] = draw_gaussian(out[i], pts_crop[i], self.opt.hm_gauss)
meta = {'index' : index, 'center' : c, 'scale' : s, \
'pts_crop': pts_crop}
return {'input': inp, 'target': out, 'meta': meta}