當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.get_optimizer方法代碼示例

本文整理匯總了Python中utils.get_optimizer方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.get_optimizer方法的具體用法?Python utils.get_optimizer怎麽用?Python utils.get_optimizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.get_optimizer方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_optimizer [as 別名]
def __init__(self, input_dim=None, output_dim=1, factor_order=10, init_path=None, opt_algo='gd', learning_rate=1e-2,
                 l2_w=0, l2_v=0, random_seed=None):
        Model.__init__(self)
        init_vars = [('w', [input_dim, output_dim], 'xavier', dtype),
                     ('v', [input_dim, factor_order], 'xavier', dtype),
                     ('b', [output_dim], 'zero', dtype)]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None: 
                tf.set_random_seed(random_seed)
            self.X = tf.sparse_placeholder(dtype)
            self.y = tf.placeholder(dtype)
            self.vars = utils.init_var_map(init_vars, init_path)

            X_square = tf.SparseTensor(self.X.indices, tf.square(self.X.values), tf.to_int64(tf.shape(self.X)))
            xv = tf.square(tf.sparse_tensor_dense_matmul(self.X, self.vars['v']))
            p = 0.5 * tf.reshape(
                tf.reduce_sum(xv - tf.sparse_tensor_dense_matmul(X_square, tf.square(self.vars['v'])), 1),
                [-1, output_dim])
            xw = tf.sparse_tensor_dense_matmul(self.X, self.vars['w'])
            logits = tf.reshape(xw + self.vars['b'] + p, [-1])
            self.y_prob = tf.sigmoid(logits)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=self.y)) + \
                        l2_w * tf.nn.l2_loss(xw) + \
                        l2_v * tf.nn.l2_loss(xv)
            self.optimizer = utils.get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess) 
開發者ID:wyl6,項目名稱:Recommender-Systems-Samples,代碼行數:35,代碼來源:models.py

示例2: __init__

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_optimizer [as 別名]
def __init__(self, opt):
        self.opt = opt
        self.device = torch.device("cuda" if opt.ngpu else "cpu")
        
        self.model, self.classifier = models.get_model(opt.net_type, 
                                                       opt.classifier_type, 
                                                       opt.pretrained,
                                                       int(opt.nclasses))
        self.model = self.model.to(self.device)
        self.classifier = self.classifier.to(self.device)

        if opt.ngpu>1:
            self.model = nn.DataParallel(self.model)
            
        self.loss = models.init_loss(opt.loss_type)
        self.loss = self.loss.to(self.device)

        self.optimizer = utils.get_optimizer(self.model, self.opt)
        self.lr_scheduler = utils.get_lr_scheduler(self.opt, self.optimizer)
        self.alpha_scheduler = utils.get_margin_alpha_scheduler(self.opt)

        self.train_loader = datasets.generate_loader(opt,'train') 
        self.test_loader = datasets.generate_loader(opt,'val')    
        
        self.epoch = 0
        self.best_epoch = False
        self.training = False
        self.state = {}
        

        self.train_loss = utils.AverageMeter()
        self.test_loss  = utils.AverageMeter()
        self.batch_time = utils.AverageMeter()
        self.test_metrics = utils.ROCMeter()
        self.best_test_loss = utils.AverageMeter()                    
        self.best_test_loss.update(np.array([np.inf]))

        self.visdom_log_file = os.path.join(self.opt.out_path, 'log_files', 'visdom.log')
        self.vis = Visdom(port = opt.visdom_port,
                          log_to_filename=self.visdom_log_file,
                          env=opt.exp_name + '_' + str(opt.fold))

        self.vis_loss_opts = {'xlabel': 'epoch', 
                              'ylabel': 'loss', 
                              'title':'losses', 
                              'legend': ['train_loss', 'val_loss']}

        self.vis_tpr_opts = {'xlabel': 'epoch', 
                              'ylabel': 'tpr', 
                              'title':'val_tpr', 
                              'legend': ['tpr@fpr10-2', 'tpr@fpr10-3', 'tpr@fpr10-4']}

        self.vis_epochloss_opts = {'xlabel': 'epoch', 
                              'ylabel': 'loss', 
                              'title':'epoch_losses', 
                              'legend': ['train_loss', 'val_loss']} 
開發者ID:AlexanderParkin,項目名稱:ChaLearn_liveness_challenge,代碼行數:58,代碼來源:trainer.py

示例3: __init__

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_optimizer [as 別名]
def __init__(self, opt):
        self.opt = opt
        self.device = torch.device("cuda" if opt.ngpu else "cpu")
        
        self.model, self.classifier = models.get_model(opt.net_type, 
                                                       opt.loss_type, 
                                                       opt.pretrained,
                                                       int(opt.nclasses))
        self.model = self.model.to(self.device)
        self.classifier = self.classifier.to(self.device)

        if opt.ngpu>1:
            self.model = nn.DataParallel(self.model)
            
        self.loss = models.init_loss(opt.loss_type)
        self.loss = self.loss.to(self.device)

        self.optimizer = utils.get_optimizer(self.model, self.opt)
        self.lr_scheduler = utils.get_lr_scheduler(self.opt, self.optimizer)

        self.train_loader = datasets.generate_loader(opt,'train') 
        self.test_loader = datasets.generate_loader(opt,'val')    
        
        self.epoch = 0
        self.best_epoch = False
        self.training = False
        self.state = {}
        

        self.train_loss = utils.AverageMeter()
        self.test_loss  = utils.AverageMeter()
        self.batch_time = utils.AverageMeter()
        if self.opt.loss_type in ['cce', 'bce', 'mse', 'arc_margin']:
            self.test_metrics = utils.AverageMeter()
        else:
            self.test_metrics = utils.ROCMeter()

        self.best_test_loss = utils.AverageMeter()                    
        self.best_test_loss.update(np.array([np.inf]))

        self.visdom_log_file = os.path.join(self.opt.out_path, 'log_files', 'visdom.log')
        self.vis = Visdom(port = opt.visdom_port,
                          log_to_filename=self.visdom_log_file,
                          env=opt.exp_name + '_' + str(opt.fold))

        self.vis_loss_opts = {'xlabel': 'epoch', 
                              'ylabel': 'loss', 
                              'title':'losses', 
                              'legend': ['train_loss', 'val_loss']}

        self.vis_epochloss_opts = {'xlabel': 'epoch', 
                              'ylabel': 'loss', 
                              'title':'epoch_losses', 
                              'legend': ['train_loss', 'val_loss']} 
開發者ID:AlexanderParkin,項目名稱:ChaLearn_liveness_challenge,代碼行數:56,代碼來源:trainer.py


注:本文中的utils.get_optimizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。