本文整理匯總了Python中utils.get_batch方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.get_batch方法的具體用法?Python utils.get_batch怎麽用?Python utils.get_batch使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils
的用法示例。
在下文中一共展示了utils.get_batch方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += len(data) * loss
hidden = repackage_hidden(hidden)
return total_loss.item() / len(data_source)
示例2: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(self, sess, set_type):
if set_type == 'val':
num_images = len(self.obj.val_list)
generator = self.obj.val_generator()
else:
num_images = len(self.obj.train_list)
generator = self.obj.train_generator()
true_positives = 0
val_loss = 0
num_batches = num_images//self.batch_size if num_images%self.batch_size == 0 else num_images//self.batch_size + 1
for i in range(num_batches):
x_batch, y_batch = get_batch(generator, set_type, height=self.model.height, width=self.model.width)
predicted = sess.run([self.model.pred], feed_dict={self.model.x:x_batch, self.model.y:y_batch})
true_positives = true_positives + np.sum(predicted[0] == np.argmax(y_batch,1))
print('set_type:',set_type, 'accuracy = ', true_positives*100.0/num_images)
#predict the labels for test dataset
示例3: predict
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def predict(self, sess, set_type):
if set_type == 'val':
num_images = len(self.obj.val_list)
generator = self.obj.val_generator()
elif set_type == 'test':
num_images = len(self.obj.test_list)
generator = self.obj.test_generator()
else:
num_images = len(self.obj.train_list)
generator = self.obj.train_generator()
true_positives = 0
num_batches = num_images//self.batch_size if num_images%self.batch_size == 0 else num_images//self.batch_size + 1
model_predictions = []
for i in range(num_batches):
x_batch, _ = get_batch(generator, set_type , height=self.model.height, width=self.model.width)
predicted = sess.run([ self.model.pred], feed_dict={self.model.x:x_batch})
model_predictions.extend(predicted[0])
return model_predictions
示例4: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss.item() / len(data_source)
示例5: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例6: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
print(i, data_source.size(0)-1)
data, targets = get_batch(data_source, i, args, evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
# Load the best saved model.
示例7: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, model, parallel_model, params, batch_size=10):
# Turn on evaluation mode which disables dropout.
arch_pool = params['arch_pool']
logging.info('Evaluating on {} archs'.format(len(arch_pool)))
start_time = time.time()
valid_score_list = []
for arch in arch_pool:
model.eval()
hidden = model.init_hidden(batch_size)
#whether use random batch ?
# data_source is in the format of [length, bs, ...]
#for i in range(0, data_source.size(0) - 1, params['bptt']):
#for i in range(1):
batch = np.random.randint(0, data_source.size(0)//params['bptt'])
data, targets = get_batch(data_source, batch, params['bptt'], evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden, arch)
loss = F.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data[0]
valid_score_list.append(loss)
eval_time = time.time() - start_time
mean_valid_score = np.mean(valid_score_list)
logging.info('Mean loss {:5.2f} | mean ppl {:8.2f} | time {:5.2f} secs'.format(mean_valid_score, np.exp(mean_valid_score), eval_time))
return valid_score_list
示例8: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
print(i, data_source.size(0)-1)
data, targets = get_batch(data_source, i, args, evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden, args.arc)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
# Load the best saved model.
示例9: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args.bptt, evaluation=True)
targets = targets.view(-1)
log_prob, hidden = parallel_model(data, hidden)
loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
total_loss += loss * len(data)
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例10: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
if args.model == 'QRNN': model.reset()
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例11: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
if args.model == 'QRNN': model.reset()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例12: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size, seq_len):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
tokens = 0
n = 0
save_all_losses = []
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, seq_len):
tokens += seq_len
data, targets = get_batch(data_source, i, args, evaluation=True, seq_len=seq_len)
output, hidden = model(data, hidden)
output = nn.functional.log_softmax(output.permute(2,1,0)).permute(2,1,0)
targets = targets.view(data.data.shape[0], batch_size, -1)
CELoss = torch.gather(output.data, dim=2, index=targets.data).squeeze()
CELoss = -1*CELoss
if tokens < args.start_token: continue # We are not ready to accumulate error yet
elif tokens >= args.start_token and tokens-seq_len < args.start_token:
data.data = data.data[-(tokens-args.start_token+1):]
CELoss = CELoss[-(tokens-args.start_token+1):]
print('First word: %s' % (corpus.dictionary.idx2word[data.data[-(tokens-args.start_token+1),0]]))
total_loss += torch.sum(CELoss)
n += data.size(0)
save_all_losses += CELoss.tolist()
hidden = repackage_hidden(hidden)
print('total: %d' % n)
print('Last word: %s' % (corpus.dictionary.idx2word[data.data[-1,0]]))
return total_loss / float(n), save_all_losses
示例13: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例14: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
# Load the best saved model.
示例15: evaluate
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import get_batch [as 別名]
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
model.eval()
if args.model == 'QRNN': model.reset()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
total_loss += len(data) * criterion(model.decoder.weight, model.decoder.bias, output, targets).data
hidden = repackage_hidden(hidden)
return total_loss.item() / len(data_source)