本文整理匯總了Python中utils.flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.flatten方法的具體用法?Python utils.flatten怎麽用?Python utils.flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils
的用法示例。
在下文中一共展示了utils.flatten方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: softmax
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def softmax(logits, scope=None):
with tf.name_scope(scope or "softmax"): # noted here is name_scope not variable
flat_logits = flatten(logits, 1)
flat_out = tf.nn.softmax(flat_logits)
out = reconstruct(flat_out, logits, 1)
return out
# softmax selection?
# return target * softmax(logits)
# target: [ ..., J, d]
# logits: [ ..., J]
# so [N, M, dim] * [N, M] -> [N, dim], so [N, M] is the attention for each M
# return: [ ..., d] # so the target vector is attended with logits' softmax
# [N, M, JX, JQ, 2d] * [N, M, JX, JQ] (each context to query's mapping) -> [N, M, JX, 2d] # attened the JQ dimension
示例2: softmax
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def softmax(logits,scope=None):
with tf.name_scope(scope or "softmax"): # noted here is name_scope not variable
flat_logits = flatten(logits,1)
flat_out = tf.nn.softmax(flat_logits)
out = reconstruct(flat_out,logits,1)
return out
# softmax selection?
# return target * softmax(logits)
# target: [ ..., J, d]
# logits: [ ..., J]
# so [N,M,dim] * [N,M] -> [N,dim], so [N,M] is the attention for each M
# return: [ ..., d] # so the target vector is attended with logits' softmax
# [N,M,JX,JQ,2d] * [N,M,JX,JQ] (each context to query's mapping) -> [N,M,JX,2d] # attened the JQ dimension
示例3: softmax
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def softmax(logits,scope=None):
with tf.name_scope(scope or "softmax"): # noted here is name_scope not variable
flat_logits = flatten(logits,1)
flat_out = tf.nn.softmax(flat_logits)
out = reconstruct(flat_out,logits,1)
return out
# softmax selection
# return target * softmax(logits)
# target: [ ..., J, d]
# logits: [ ..., J]
# so [N,M,dim] * [N,M] -> [N,dim], so [N,M] is the attention for each M
# return: [ ..., d] # so the target vector is attended with logits' softmax
# [N,M,JX,JQ,2d] * [N,M,JX,JQ] (each context to query's mapping) -> [N,M,JX,2d] # attened the JQ dimension
示例4: scan_P__
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def scan_P__(P__):
"""Detect up_forks and down_forks per P."""
for _P_, P_ in pairwise(P__): # Iterate through pairs of lines.
_iter_P_, iter_P_ = iter(_P_), iter(P_) # Convert to iterators.
try:
_P, P = next(_iter_P_), next(iter_P_) # First pair to check.
except StopIteration: # No more up_fork-down_fork pair.
continue # To next pair of _P_, P_.
while True:
isleft, olp = comp_edge(_P, P) # Check for 4 different cases.
if olp and _P['sign'] == P['sign']:
_P['down_fork_'].append(P)
P['up_fork_'].append(_P)
try: # Check for stopping:
_P, P = (next(_iter_P_), P) if isleft else (_P, next(iter_P_))
except StopIteration: # No more up_fork - down_fork pair.
break # To next pair of _P_, P_.
return [*flatten(P__)] # Flatten P__ before return.
示例5: combine_lut_dicts
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def combine_lut_dicts(*args):
ks = utils.flatten([x.keys() for x in args])
d = {}
for k in set(ks):
d[k] = utils.flatten([x[k] for x in args if k in x.keys()])
return d
示例6: forward
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def forward(self, ftr_1):
'''
Input:
ftr_1 : features at 1x1 layer
Output:
lgt_glb_mlp: class logits from global features
lgt_glb_lin: class logits from global features
'''
# collect features to feed into classifiers
# - always detach() -- send no grad into encoder!
h_top_cls = flatten(ftr_1).detach()
# compute predictions
lgt_glb_mlp = self.block_glb_mlp(h_top_cls)
lgt_glb_lin = self.block_glb_lin(h_top_cls)
return lgt_glb_mlp, lgt_glb_lin
示例7: kasiki
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def kasiki(text):
if args.verbose:
print("Finding sequence duplicates and spacings...")
utils.args = args
min_length = 2 if (args.exhaustive or len(clean_text) < TEST_2_MAX_TEXT_LENGTH) else 3
seqSpacings = utils.find_sequence_duplicates(clean_text, min_length)
if args.verbose:
if args.all:
print(seqSpacings)
print("Extracting spacing divisors...")
divisors = useful_divisors(flatten(list(seqSpacings.values())))
divisorsCount = utils.repetitions(divisors)
if args.exhaustive:
return [x[0] for x in divisorsCount]
return [x[0] for x in divisorsCount if x[0] <= KEY_LENGTH_THRESHOLD]
示例8: linear
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def linear(x, output_size, scope, add_tanh=False, wd=None):
with tf.variable_scope(scope):
# since the input here is not two rank, we flat the input while keeping the last dims
keep = 1
#print x.get_shape().as_list()
flat_x = flatten(x, keep) # keeping the last one dim # [N, M, JX, JQ, 2d] => [N*M*JX*JQ, 2d]
#print flat_x.get_shape() # (?, 200) # wd+cwd
bias_start = 0.0
if not (type(output_size) == type(1)): # need to be get_shape()[k].value
output_size = output_size.value
#print [flat_x.get_shape()[-1], output_size]
W = tf.get_variable("W", dtype="float", initializer=tf.truncated_normal([flat_x.get_shape()[-1].value, output_size], stddev=0.1))
bias = tf.get_variable("b", dtype="float", initializer=tf.constant(bias_start, shape=[output_size]))
flat_out = tf.matmul(flat_x, W)+bias
if add_tanh:
flat_out = tf.tanh(flat_out, name="tanh")
if wd is not None:
add_wd(wd)
out = reconstruct(flat_out, x, keep)
return out
示例9: linear
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def linear(x,output_size,scope,add_tanh=False,wd=None):
with tf.variable_scope(scope):
# since the input here is not two rank, we flat the input while keeping the last dims
keep = 1
#print x.get_shape().as_list()
flat_x = flatten(x,keep) # keeping the last one dim # [N,M,JX,JQ,2d] => [N*M*JX*JQ,2d]
#print flat_x.get_shape() # (?, 200) # wd+cwd
bias_start = 0.0
if not (type(output_size) == type(1)): # need to be get_shape()[k].value
output_size = output_size.value
#print [flat_x.get_shape()[-1],output_size]
W = tf.get_variable("W",dtype="float",initializer=tf.truncated_normal([flat_x.get_shape()[-1].value,output_size],stddev=0.1))
bias = tf.get_variable("b",dtype="float",initializer=tf.constant(bias_start,shape=[output_size]))
flat_out = tf.matmul(flat_x,W)+bias
if add_tanh:
flat_out = tf.tanh(flat_out,name="tanh")
if wd is not None:
add_wd(wd)
out = reconstruct(flat_out,x,keep)
return out
示例10: softmax
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def softmax(logits,scope=None):
with tf.name_scope(scope or "softmax"): # noted here is name_scope not variable
flat_logits = flatten(logits,1)
flat_out = tf.nn.softmax(flat_logits)
out = reconstruct(flat_out,logits,1)
return out
# add current scope's variable's l2 loss to loss collection
示例11: linear
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import flatten [as 別名]
def linear(x,output_size,scope,add_tanh=False,wd=None):
with tf.variable_scope(scope):
# since the input here is not two rank, we flat the input while keeping the last dims
keep = 1
#print x.get_shape().as_list()
flat_x = flatten(x,keep) # keeping the last one dim # [N,M,JX,JQ,2d] => [N*M*JX*JQ,2d]
#print flat_x.get_shape() # (?, 200) # wd+cwd
bias_start = 0.0
if not (type(output_size) == type(1)): # need to be get_shape()[k].value
output_size = output_size.value
#print [flat_x.get_shape()[-1],output_size]
W = tf.get_variable("W",dtype="float",initializer=tf.truncated_normal([flat_x.get_shape()[-1].value,output_size],stddev=0.1))
bias = tf.get_variable("b",dtype="float",initializer=tf.constant(bias_start,shape=[output_size]))
flat_out = tf.matmul(flat_x,W)+bias
if add_tanh:
flat_out = tf.tanh(flat_out,name="tanh")
if wd is not None:
add_wd(wd)
out = reconstruct(flat_out,x,keep)
return out
# from https://github.com/barronalex/Dynamic-Memory-Networks-in-TensorFlow