當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.extract_bboxes方法代碼示例

本文整理匯總了Python中utils.extract_bboxes方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.extract_bboxes方法的具體用法?Python utils.extract_bboxes怎麽用?Python utils.extract_bboxes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.extract_bboxes方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_image_gt

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import extract_bboxes [as 別名]
def load_image_gt(mask, config, anchors):
    """Generate the ground truth data for a mask.
    mask: [D, H, W]
    Returns:
    image: [1, D, H, W]
    class_ids: [instance_count] Integer class IDs
    bbox: [instance_count, (z1, y1, x1, z2, y2, x2)]
    mask: [num_classes, D, H, W]
    rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral)
    rpn_bbox: [batch, N, (dz, dy, dx, log(dd), log(dh), log(dw))] Anchor bbox deltas
    """
    # Bounding boxes: [num_instances, (z1, y1, x1, z2, y2, x2)]
    bbox = utils.extract_bboxes(mask)  # we here use the whole liver + tumor as the gt-bbox
    bbox = utils.extend_bbox(bbox, mask.shape)  # extend the gt_bbox with 5% ratio in each dimension
    bbox = np.tile(bbox, (config.NUM_CLASSES - 1, 1))  # [num_classes - 1, (z1, y1, x1, z2, y2, x2)]

    # RPN Targets
    rpn_match, rpn_bbox = build_rpn_targets(anchors, np.array([bbox[0]]), config)

    # Add to batch
    rpn_match = rpn_match[:, np.newaxis]

    return rpn_match, rpn_bbox, bbox 
開發者ID:Wuziyi616,項目名稱:CFUN,代碼行數:25,代碼來源:model.py

示例2: visualize_instance_segmentation

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import extract_bboxes [as 別名]
def visualize_instance_segmentation(data_base_dir, dataset_type, image_id, save_path='', verbose=True):
    split_dataset = SketchDataset(data_base_dir)
    split_dataset.load_sketches(dataset_type)
    split_dataset.prepare()

    original_image = split_dataset.load_image(image_id - 1)
    gt_mask, gt_class_id = split_dataset.load_mask(image_id - 1)
    gt_bbox = utils.extract_bboxes(gt_mask)

    if verbose:
        log('original_image', original_image)
        log('gt_class_id', gt_class_id)
        log('gt_bbox', gt_bbox)
        log('gt_mask', gt_mask)

    visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id,
                                split_dataset.class_names, save_path=save_path) 
開發者ID:SketchyScene,項目名稱:SketchyScene,代碼行數:19,代碼來源:instance_visualize.py

示例3: load_image_gt

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import extract_bboxes [as 別名]
def load_image_gt(dataset, config, image_id, augment=False,
                  use_mini_mask=False):
    """Load and return ground truth data for an image (image, mask, bounding boxes).

    augment: If true, apply random image augmentation. Currently, only
        horizontal flipping is offered.
    use_mini_mask: If False, returns full-size masks that are the same height
        and width as the original image. These can be big, for example
        1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
        224x224 and are generated by extracting the bounding box of the
        object and resizing it to MINI_MASK_SHAPE.

    Returns:
    image: [height, width, 3]
    shape: the original shape of the image before resizing and cropping.
    class_ids: [instance_count] Integer class IDs
    bbox: [instance_count, (y1, x1, y2, x2)]
    mask: [height, width, instance_count]. The height and width are those
        of the image unless use_mini_mask is True, in which case they are
        defined in MINI_MASK_SHAPE.
    """
    # Load image and mask
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    shape = image.shape
    image, window, scale, padding = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        max_dim=config.IMAGE_MAX_DIM,
        padding=config.IMAGE_PADDING)
    mask = utils.resize_mask(mask, scale, padding)

    # Random horizontal flips.
    if augment:
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    # Bounding boxes. Note that some boxes might be all zeros
    # if the corresponding mask got cropped out.
    # bbox: [num_instances, (y1, x1, y2, x2)]
    bbox = utils.extract_bboxes(mask)

    # Active classes
    # Different datasets have different classes, so track the
    # classes supported in the dataset of this image.
    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
    active_class_ids[source_class_ids] = 1

    # Resize masks to smaller size to reduce memory usage
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    # Image meta data
    image_meta = compose_image_meta(image_id, shape, window, active_class_ids)

    return image, image_meta, class_ids, bbox, mask 
開發者ID:olgaliak,項目名稱:segmentation-unet-maskrcnn,代碼行數:60,代碼來源:model.py

示例4: load_image_gt

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import extract_bboxes [as 別名]
def load_image_gt(dataset, config, image_id, augment=False,
                  use_mini_mask=False):
    """Load and return ground truth data for an image (image, mask, bounding boxes).

    augment: If true, apply random image augmentation. Currently, only
        horizontal flipping is offered.
    use_mini_mask: If False, returns full-size masks that are the same height
        and width as the original image. These can be big, for example
        1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
        224x224 and are generated by extracting the bounding box of the
        object and resizing it to MINI_MASK_SHAPE.

    Returns:
    image: [height, width, 3]
    shape: the original shape of the image before resizing and cropping.
    class_ids: [instance_count] Integer class IDs
    bbox: [instance_count, (y1, x1, y2, x2)]
    mask: [height, width, instance_count]. The height and width are those
        of the image unless use_mini_mask is True, in which case they are
        defined in MINI_MASK_SHAPE.
    """
    # Load image and mask
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    shape = image.shape
    image_resize, window, scale, padding = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        max_dim=config.IMAGE_MAX_DIM,
        padding=config.IMAGE_PADDING)
    # mask = utils.resize_mask(mask, scale, padding)
    mask = mask

    # Random horizontal flips.
    if augment:
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    # Bounding boxes. Note that some boxes might be all zeros
    # if the corresponding mask got cropped out.
    # bbox: [num_instances, (y1, x1, y2, x2)]
    bbox = utils.extract_bboxes(mask)

    # Active classes
    # Different datasets have different classes, so track the
    # classes supported in the dataset of this image.
    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
    active_class_ids[source_class_ids] = 1

    # Resize masks to smaller size to reduce memory usage
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    # Image meta data
    image_meta = compose_image_meta(image_id, shape, window, active_class_ids)

    return image, image_meta, class_ids, bbox, mask 
開發者ID:wwoody827,項目名稱:cvpr-2018-autonomous-driving-autopilot-solution,代碼行數:61,代碼來源:model_resnext_v2.py

示例5: load_image_gt

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import extract_bboxes [as 別名]
def load_image_gt(dataset, config, image_id, augment=True,
                  use_mini_mask=False):
    """Load and return ground truth data for an image (image, mask, bounding boxes).

    augment: If true, apply random image augmentation. Currently, only
        horizontal flipping is offered.
    use_mini_mask: If False, returns full-size masks that are the same height
        and width as the original image. These can be big, for example
        1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
        224x224 and are generated by extracting the bounding box of the
        object and resizing it to MINI_MASK_SHAPE.

    Returns:
    image: [height, width, 3]
    shape: the original shape of the image before resizing and cropping.
    class_ids: [instance_count] Integer class IDs
    bbox: [instance_count, (y1, x1, y2, x2)]
    mask: [height, width, instance_count]. The height and width are those
        of the image unless use_mini_mask is True, in which case they are
        defined in MINI_MASK_SHAPE.
    """
    # Load image and mask
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    shape = image.shape
    image_resize, window, scale, padding = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        max_dim=config.IMAGE_MAX_DIM,
        padding=config.IMAGE_PADDING)
    # mask = utils.resize_mask(mask, scale, padding)
    mask = mask

    # Random horizontal flips.
    if augment:
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    # Bounding boxes. Note that some boxes might be all zeros
    # if the corresponding mask got cropped out.
    # bbox: [num_instances, (y1, x1, y2, x2)]
    bbox = utils.extract_bboxes(mask)

    # Active classes
    # Different datasets have different classes, so track the
    # classes supported in the dataset of this image.
    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
    active_class_ids[source_class_ids] = 1

    # Resize masks to smaller size to reduce memory usage
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    # Image meta data
    image_meta = compose_image_meta(image_id, shape, window, active_class_ids)

    return image, image_meta, class_ids, bbox, mask 
開發者ID:wwoody827,項目名稱:cvpr-2018-autonomous-driving-autopilot-solution,代碼行數:61,代碼來源:model_resnext.py


注:本文中的utils.extract_bboxes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。