當前位置: 首頁>>代碼示例>>Python>>正文


Python debugger.Debugger方法代碼示例

本文整理匯總了Python中utils.debugger.Debugger方法的典型用法代碼示例。如果您正苦於以下問題:Python debugger.Debugger方法的具體用法?Python debugger.Debugger怎麽用?Python debugger.Debugger使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.debugger的用法示例。


在下文中一共展示了debugger.Debugger方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: demo_image

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def demo_image(image, model, opt):
  s = max(image.shape[0], image.shape[1]) * 1.0
  c = np.array([image.shape[1] / 2., image.shape[0] / 2.], dtype=np.float32)
  trans_input = get_affine_transform(
      c, s, 0, [opt.input_w, opt.input_h])
  inp = cv2.warpAffine(image, trans_input, (opt.input_w, opt.input_h),
                         flags=cv2.INTER_LINEAR)
  inp = (inp / 255. - mean) / std
  inp = inp.transpose(2, 0, 1)[np.newaxis, ...].astype(np.float32)
  inp = torch.from_numpy(inp).to(opt.device)
  out = model(inp)[-1]
  pred = get_preds(out['hm'].detach().cpu().numpy())[0]
  pred = transform_preds(pred, c, s, (opt.output_w, opt.output_h))
  pred_3d = get_preds_3d(out['hm'].detach().cpu().numpy(), 
                         out['depth'].detach().cpu().numpy())[0]
  
  debugger = Debugger()
  debugger.add_img(image)
  debugger.add_point_2d(pred, (255, 0, 0))
  debugger.add_point_3d(pred_3d, 'b')
  debugger.show_all_imgs(pause=False)
  debugger.show_3d() 
開發者ID:xingyizhou,項目名稱:pytorch-pose-hg-3d,代碼行數:24,代碼來源:demo.py

示例2: debug

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def debug(self, batch, output, iter_id):
    opt = self.opt
    reg = output['reg'] if opt.reg_offset else None
    dets = ctdet_decode(
      output['hm'], output['wh'], reg=reg,
      cat_spec_wh=opt.cat_spec_wh, K=opt.K)
    dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])
    dets[:, :, :4] *= opt.down_ratio
    dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2])
    dets_gt[:, :, :4] *= opt.down_ratio
    for i in range(1):
      debugger = Debugger(
        dataset=opt.dataset, ipynb=(opt.debug==3), theme=opt.debugger_theme)
      img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0)
      img = np.clip(((
        img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8)
      pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy())
      gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy())
      debugger.add_blend_img(img, pred, 'pred_hm')
      debugger.add_blend_img(img, gt, 'gt_hm')
      debugger.add_img(img, img_id='out_pred')
      for k in range(len(dets[i])):
        if dets[i, k, 4] > opt.center_thresh:
          debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1],
                                 dets[i, k, 4], img_id='out_pred')

      debugger.add_img(img, img_id='out_gt')
      for k in range(len(dets_gt[i])):
        if dets_gt[i, k, 4] > opt.center_thresh:
          debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1],
                                 dets_gt[i, k, 4], img_id='out_gt')

      if opt.debug == 4:
        debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id))
      else:
        debugger.show_all_imgs(pause=True) 
開發者ID:CaoWGG,項目名稱:CenterNet-CondInst,代碼行數:38,代碼來源:ctdet.py

示例3: debug

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def debug(self, batch, output, iter_id):
    opt = self.opt
    detections = self.decode(output['hm_t'], output['hm_l'], 
                             output['hm_b'], output['hm_r'], 
                             output['hm_c']).detach().cpu().numpy()
    detections[:, :, :4] *= opt.input_res / opt.output_res
    for i in range(1):
      debugger = Debugger(
        dataset=opt.dataset, ipynb=(opt.debug==3), theme=opt.debugger_theme)
      pred_hm = np.zeros((opt.input_res, opt.input_res, 3), dtype=np.uint8)
      gt_hm = np.zeros((opt.input_res, opt.input_res, 3), dtype=np.uint8)
      img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0)
      img = ((img * self.opt.std + self.opt.mean) * 255.).astype(np.uint8)
      for p in self.parts:
        tag = 'hm_{}'.format(p)
        pred = debugger.gen_colormap(output[tag][i].detach().cpu().numpy())
        gt = debugger.gen_colormap(batch[tag][i].detach().cpu().numpy())
        if p != 'c':
          pred_hm = np.maximum(pred_hm, pred)
          gt_hm = np.maximum(gt_hm, gt)
        if p == 'c' or opt.debug > 2:
          debugger.add_blend_img(img, pred, 'pred_{}'.format(p))
          debugger.add_blend_img(img, gt, 'gt_{}'.format(p))
      debugger.add_blend_img(img, pred_hm, 'pred')
      debugger.add_blend_img(img, gt_hm, 'gt')
      debugger.add_img(img, img_id='out')
      for k in range(len(detections[i])):
        if detections[i, k, 4] > 0.1:
          debugger.add_coco_bbox(detections[i, k, :4], detections[i, k, -1],
                                 detections[i, k, 4], img_id='out')
      if opt.debug == 4:
        debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id))
      else:
        debugger.show_all_imgs(pause=True) 
開發者ID:CaoWGG,項目名稱:CenterNet-CondInst,代碼行數:36,代碼來源:exdet.py

示例4: debug

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def debug(self, batch, output, iter_id):
        opt = self.opt
        reg = output['reg'] if opt.reg_offset else None
        dets = ctdet_decode(
            output['hm'], output['wh'], reg=reg,
            cat_spec_wh=opt.cat_spec_wh, K=opt.K)
        dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])
        dets[:, :, :4] *= opt.down_ratio
        dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2])
        dets_gt[:, :, :4] *= opt.down_ratio
        for i in range(1):
            debugger = Debugger(
                dataset=opt.dataset, ipynb=(opt.debug == 3), theme=opt.debugger_theme)
            img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0)
            img = np.clip(((
                                   img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8)
            pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy())
            gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy())
            debugger.add_blend_img(img, pred, 'pred_hm')
            debugger.add_blend_img(img, gt, 'gt_hm')
            debugger.add_img(img, img_id='out_pred')
            for k in range(len(dets[i])):
                if dets[i, k, 4] > opt.center_thresh:
                    debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1],
                                           dets[i, k, 4], img_id='out_pred')

            debugger.add_img(img, img_id='out_gt')
            for k in range(len(dets_gt[i])):
                if dets_gt[i, k, 4] > opt.center_thresh:
                    debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1],
                                           dets_gt[i, k, 4], img_id='out_gt')

            if opt.debug == 4:
                debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id))
            else:
                debugger.show_all_imgs(pause=True) 
開發者ID:CaoWGG,項目名稱:CenterNet-CondInst,代碼行數:38,代碼來源:ctseg.py

示例5: main

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def main():
  opt = opts().parse()
  if opt.loadModel == '':
    opt.loadModel = '../models/Pascal3D-cpu.pth'
  model = torch.load(opt.loadModel)
  img = cv2.imread(opt.demo)
  s = max(img.shape[0], img.shape[1]) * 1.0
  c = np.array([img.shape[1] / 2., img.shape[0] / 2.])
  img = Crop(img, c, s, 0, ref.inputRes).astype(np.float32).transpose(2, 0, 1) / 256.
  input = torch.from_numpy(img.copy()).float()
  input = input.view(1, input.size(0), input.size(1), input.size(2))
  input_var = torch.autograd.Variable(input).float()
  if opt.GPU > -1:
    model = model.cuda(opt.GPU)
    input_var = input_var.cuda(opt.GPU)
  
  output = model(input_var)
  hm = output[-1].data.cpu().numpy()
  
  debugger = Debugger()
  img = (input[0].numpy().transpose(1, 2, 0)*256).astype(np.uint8).copy()
  inp = img.copy()
  star = (cv2.resize(hm[0, 0], (ref.inputRes, ref.inputRes)) * 255)
  star[star > 255] = 255
  star[star < 0] = 0
  star = np.tile(star, (3, 1, 1)).transpose(1, 2, 0)
  trans = 0.8
  star = (trans * star + (1. - trans) * img).astype(np.uint8)

   
  ps = parseHeatmap(hm[0], thresh = 0.1)
  canonical, pred, color, score = [], [], [], []
  for k in range(len(ps[0])):
    x, y, z = ((hm[0, 1:4, ps[0][k], ps[1][k]] + 0.5) * ref.outputRes).astype(np.int32)
    dep = ((hm[0, 4, ps[0][k], ps[1][k]] + 0.5) * ref.outputRes).astype(np.int32)
    canonical.append([x, y, z])
    pred.append([ps[1][k], ref.outputRes - dep, ref.outputRes - ps[0][k]])
    score.append(hm[0, 0, ps[0][k], ps[1][k]])
    color.append((1.0 * x / ref.outputRes, 1.0 * y / ref.outputRes, 1.0 * z / ref.outputRes))
    cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 4, (255, 255, 255), -1)
    cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 2, (int(z * 4), int(y * 4), int(x * 4)), -1)
  
  pred = np.array(pred).astype(np.float32)
  canonical = np.array(canonical).astype(np.float32)
  
  pointS = canonical * 1.0 / ref.outputRes
  pointT = pred * 1.0 / ref.outputRes
  R, t, s = horn87(pointS.transpose(), pointT.transpose(), score)
  
  rotated_pred = s * np.dot(R, canonical.transpose()).transpose() + t * ref.outputRes

  debugger.addImg(inp, 'inp')
  debugger.addImg(star, 'star')
  debugger.addImg(img, 'nms')
  debugger.addPoint3D(canonical / ref.outputRes - 0.5, c = color, marker = '^')
  debugger.addPoint3D(pred / ref.outputRes - 0.5, c = color, marker = 'x')
  debugger.addPoint3D(rotated_pred / ref.outputRes - 0.5, c = color, marker = '*')

  debugger.showAllImg(pause = True)
  debugger.show3D() 
開發者ID:xingyizhou,項目名稱:StarMap,代碼行數:62,代碼來源:demo.py

示例6: debug

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def debug(self, batch, output, iter_id):
        cfg = self.cfg
        reg = output[3] if cfg.LOSS.REG_OFFSET else None
        hm_hp = output[4] if cfg.LOSS.HM_HP else None
        hp_offset = output[5] if cfg.LOSS.REG_HP_OFFSET else None
        dets = multi_pose_decode(
          output[0], output[1], output[2], 
          reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=cfg.TEST.TOPK)
        dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])

        dets[:, :, :4] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES
        dets[:, :, 5:39] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES
        dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2])
        dets_gt[:, :, :4] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES
        dets_gt[:, :, 5:39] *= cfg.MODEL.INPUT_RES / cfg.MODEL.OUTPUT_RES
        for i in range(1):
            debugger = Debugger(
            dataset=cfg.SAMPLE_METHOD, ipynb=(cfg.DEBUG==3), theme=cfg.DEBUG_THEME)
            img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0)
            img = np.clip(((
            img * np.array(cfg.DATASET.STD).reshape(1,1,3).astype(np.float32) + cfg.DATASET.MEAN) * 255.), 0, 255).astype(np.uint8)
            pred = debugger.gen_colormap(output[0][i].detach().cpu().numpy())
            gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy())
            debugger.add_blend_img(img, pred, 'pred_hm')
            debugger.add_blend_img(img, gt, 'gt_hm')

            debugger.add_img(img, img_id='out_pred')
            for k in range(len(dets[i])):
                if dets[i, k, 4] > cfg.MODEL.CENTER_THRESH:
                    debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1],
                                         dets[i, k, 4], img_id='out_pred')
                    debugger.add_coco_hp(dets[i, k, 5:39], img_id='out_pred')

            debugger.add_img(img, img_id='out_gt')
            for k in range(len(dets_gt[i])):
                if dets_gt[i, k, 4] > cfg.MODEL.CENTER_THRESH:
                    debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1],
                                 dets_gt[i, k, 4], img_id='out_gt')
                    debugger.add_coco_hp(dets_gt[i, k, 5:39], img_id='out_gt')

            if cfg.LOSS.HM_HP:
                pred = debugger.gen_colormap_hp(output[4][i].detach().cpu().numpy())
                gt = debugger.gen_colormap_hp(batch['hm_hp'][i].detach().cpu().numpy())
                debugger.add_blend_img(img, pred, 'pred_hmhp')
                debugger.add_blend_img(img, gt, 'gt_hmhp')

            if cfg.DEBUG == 4:
                debugger.save_all_imgs(cfg.LOG_DIR, prefix='{}'.format(iter_id))
            else:
                debugger.show_all_imgs(pause=True) 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:52,代碼來源:multi_pose.py

示例7: _debug

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def _debug(image, t_heat, l_heat, b_heat, r_heat, ct_heat):
    debugger = Debugger(num_classes=80)
    k = 0

    t_heat = torch.sigmoid(t_heat)
    l_heat = torch.sigmoid(l_heat)
    b_heat = torch.sigmoid(b_heat)
    r_heat = torch.sigmoid(r_heat)
    
    
    aggr_weight = 0.1
    t_heat = _h_aggregate(t_heat, aggr_weight=aggr_weight)
    l_heat = _v_aggregate(l_heat, aggr_weight=aggr_weight)
    b_heat = _h_aggregate(b_heat, aggr_weight=aggr_weight)
    r_heat = _v_aggregate(r_heat, aggr_weight=aggr_weight)
    t_heat[t_heat > 1] = 1
    l_heat[l_heat > 1] = 1
    b_heat[b_heat > 1] = 1
    r_heat[r_heat > 1] = 1
    
    
    ct_heat = torch.sigmoid(ct_heat)

    t_hm = debugger.gen_colormap(t_heat[k].cpu().data.numpy())
    l_hm = debugger.gen_colormap(l_heat[k].cpu().data.numpy())
    b_hm = debugger.gen_colormap(b_heat[k].cpu().data.numpy())
    r_hm = debugger.gen_colormap(r_heat[k].cpu().data.numpy())
    ct_hm = debugger.gen_colormap(ct_heat[k].cpu().data.numpy())

    hms = np.maximum(np.maximum(t_hm, l_hm), 
                     np.maximum(b_hm, r_hm))
    # debugger.add_img(hms, 'hms')
    if image is not None:
        mean = np.array([0.40789654, 0.44719302, 0.47026115],
                        dtype=np.float32).reshape(3, 1, 1)
        std = np.array([0.28863828, 0.27408164, 0.27809835],
                        dtype=np.float32).reshape(3, 1, 1)
        img = (image[k].cpu().data.numpy() * std + mean) * 255
        img = img.astype(np.uint8).transpose(1, 2, 0)
        debugger.add_img(img, 'img')
        # debugger.add_blend_img(img, t_hm, 't_hm')
        # debugger.add_blend_img(img, l_hm, 'l_hm')
        # debugger.add_blend_img(img, b_hm, 'b_hm')
        # debugger.add_blend_img(img, r_hm, 'r_hm')
        debugger.add_blend_img(img, hms, 'extreme')
        debugger.add_blend_img(img, ct_hm, 'center')
    debugger.show_all_imgs(pause=False) 
開發者ID:xingyizhou,項目名稱:ExtremeNet,代碼行數:49,代碼來源:exkp.py

示例8: step

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def step(split, epoch, opt, dataLoader, model, criterion, optimizer = None):
    if split == 'train':
        model.train()
    else:
        model.eval()
    Loss, Acc = AverageMeter(), AverageMeter()
    preds = []

    nIters = len(dataLoader)
    bar = Bar('{}'.format(opt.expID), max=nIters)
    for i, (input, target, meta) in enumerate(dataLoader):
        input_var = torch.autograd.Variable(input).float().cuda()
        target_var = torch.autograd.Variable(target).float().cuda()
        # model = torch.nn.DataParallel(model,device_ids=[0,1,2])
        output = model(input_var)
        # output = torch.nn.parallel.data_parallel(model,input_var,device_ids=[0,1,2,3,4,5])

        if opt.DEBUG >= 2:
            gt = getPreds(target.cuda().numpy()) * 4
            pred = getPreds((output[opt.nStack - 1].data).cuda().numpy()) * 4
            debugger = Debugger()
            img = (input[0].numpy().transpose(1, 2, 0)*256).astype(np.uint8).copy()
            debugger.addImg(img)
            debugger.addPoint2D(pred[0], (255, 0, 0))
            debugger.addPoint2D(gt[0], (0, 0, 255))
            debugger.showAllImg(pause = True)

        loss = criterion(output[0], target_var)
        for k in range(1, opt.nStack):
            loss += criterion(output[k], target_var)
        # Warning.after pytorch0.5.0 -> Tensor.item()代替loss.data[0]
        Loss.update(loss.data[0], input.size(0))
        Acc.update(Accuracy((output[opt.nStack - 1].data).cpu().numpy(), (target_var.data).cpu().numpy()))
        if split == 'train':
            # train
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        else:
            input_ = input.cpu().numpy()
            input_[0] = Flip(input_[0]).copy()
            inputFlip_var = torch.autograd.Variable(torch.from_numpy(input_).view(1, input_.shape[1], ref.inputRes, ref.inputRes)).float().cuda()
            outputFlip = model(inputFlip_var)
            outputFlip = ShuffleLR(Flip((outputFlip[opt.nStack - 1].data).cpu().numpy()[0])).reshape(1, ref.nJoints, ref.outputRes, ref.outputRes)
            output_ = ((output[opt.nStack - 1].data).cpu().numpy() + outputFlip) / 2
            preds.append(finalPreds(output_, meta['center'], meta['scale'], meta['rotate'])[0])

        Bar.suffix = '{split} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | Acc {Acc.avg:.6f} ({Acc.val:.6f})'.format(epoch, i, nIters, total=bar.elapsed_td, eta=bar.eta_td, loss=Loss, Acc=Acc, split = split)
        bar.next()

    bar.finish()
    return {'Loss': Loss.avg, 'Acc': Acc.avg}, preds 
開發者ID:IcewineChen,項目名稱:pytorch-PyraNet,代碼行數:54,代碼來源:train.py

示例9: debug

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def debug(self, batch, output, iter_id):
      opt = self.opt
      wh = output['wh'] if opt.reg_bbox else None
      reg = output['reg'] if opt.reg_offset else None
      dets = ddd_decode(output['hm'], output['rot'], output['dep'],
                          output['dim'], wh=wh, reg=reg, K=opt.K)

      # x, y, score, r1-r8, depth, dim1-dim3, cls
      dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])
      calib = batch['meta']['calib'].detach().numpy()
      # x, y, score, rot, depth, dim1, dim2, dim3
      # if opt.dataset == 'gta':
      #   dets[:, 12:15] /= 3
      dets_pred = ddd_post_process(
        dets.copy(), batch['meta']['c'].detach().numpy(), 
        batch['meta']['s'].detach().numpy(), calib, opt)
      dets_gt = ddd_post_process(
        batch['meta']['gt_det'].detach().numpy().copy(),
        batch['meta']['c'].detach().numpy(), 
        batch['meta']['s'].detach().numpy(), calib, opt)
      #for i in range(input.size(0)):
      for i in range(1):
        debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug==3),
                            theme=opt.debugger_theme)
        img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0)
        img = ((img * self.opt.std + self.opt.mean) * 255.).astype(np.uint8)
        pred = debugger.gen_colormap(
          output['hm'][i].detach().cpu().numpy())
        gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy())
        debugger.add_blend_img(img, pred, 'hm_pred')
        debugger.add_blend_img(img, gt, 'hm_gt')
        # decode
        debugger.add_ct_detection(
          img, dets[i], show_box=opt.reg_bbox, center_thresh=opt.center_thresh, 
          img_id='det_pred')
        debugger.add_ct_detection(
          img, batch['meta']['gt_det'][i].cpu().numpy().copy(), 
          show_box=opt.reg_bbox, img_id='det_gt')
        debugger.add_3d_detection(
          batch['meta']['image_path'][i], dets_pred[i], calib[i],
          center_thresh=opt.center_thresh, img_id='add_pred')
        debugger.add_3d_detection(
          batch['meta']['image_path'][i], dets_gt[i], calib[i],
          center_thresh=opt.center_thresh, img_id='add_gt')
        # debugger.add_bird_view(
        #   dets_pred[i], center_thresh=opt.center_thresh, img_id='bird_pred')
        # debugger.add_bird_view(dets_gt[i], img_id='bird_gt')
        debugger.add_bird_views(
          dets_pred[i], dets_gt[i], 
          center_thresh=opt.center_thresh, img_id='bird_pred_gt')
        
        # debugger.add_blend_img(img, pred, 'out', white=True)
        debugger.compose_vis_add(
          batch['meta']['image_path'][i], dets_pred[i], calib[i],
          opt.center_thresh, pred, 'bird_pred_gt', img_id='out')
        # debugger.add_img(img, img_id='out')
        if opt.debug ==4:
          debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id))
        else:
          debugger.show_all_imgs(pause=True) 
開發者ID:CaoWGG,項目名稱:CenterNet-CondInst,代碼行數:62,代碼來源:ddd.py

示例10: debug

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def debug(self, batch, output, iter_id):
    opt = self.opt
    reg = output['reg'] if opt.reg_offset else None
    hm_hp = output['hm_hp'] if opt.hm_hp else None
    hp_offset = output['hp_offset'] if opt.reg_hp_offset else None
    dets = multi_pose_decode(
      output['hm'], output['wh'], output['hps'], 
      reg=reg, hm_hp=hm_hp, hp_offset=hp_offset, K=opt.K)
    dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])

    dets[:, :, :4] *= opt.input_res / opt.output_res
    dets[:, :, 5:39] *= opt.input_res / opt.output_res
    dets_gt = batch['meta']['gt_det'].numpy().reshape(1, -1, dets.shape[2])
    dets_gt[:, :, :4] *= opt.input_res / opt.output_res
    dets_gt[:, :, 5:39] *= opt.input_res / opt.output_res
    for i in range(1):
      debugger = Debugger(
        dataset=opt.dataset, ipynb=(opt.debug==3), theme=opt.debugger_theme)
      img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0)
      img = np.clip(((
        img * opt.std + opt.mean) * 255.), 0, 255).astype(np.uint8)
      pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy())
      gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy())
      debugger.add_blend_img(img, pred, 'pred_hm')
      debugger.add_blend_img(img, gt, 'gt_hm')

      debugger.add_img(img, img_id='out_pred')
      for k in range(len(dets[i])):
        if dets[i, k, 4] > opt.center_thresh:
          debugger.add_coco_bbox(dets[i, k, :4], dets[i, k, -1],
                                 dets[i, k, 4], img_id='out_pred')
          debugger.add_coco_hp(dets[i, k, 5:39], img_id='out_pred')

      debugger.add_img(img, img_id='out_gt')
      for k in range(len(dets_gt[i])):
        if dets_gt[i, k, 4] > opt.center_thresh:
          debugger.add_coco_bbox(dets_gt[i, k, :4], dets_gt[i, k, -1],
                                 dets_gt[i, k, 4], img_id='out_gt')
          debugger.add_coco_hp(dets_gt[i, k, 5:39], img_id='out_gt')

      if opt.hm_hp:
        pred = debugger.gen_colormap_hp(output['hm_hp'][i].detach().cpu().numpy())
        gt = debugger.gen_colormap_hp(batch['hm_hp'][i].detach().cpu().numpy())
        debugger.add_blend_img(img, pred, 'pred_hmhp')
        debugger.add_blend_img(img, gt, 'gt_hmhp')

      if opt.debug == 4:
        debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id))
      else:
        debugger.show_all_imgs(pause=True) 
開發者ID:CaoWGG,項目名稱:CenterNet-CondInst,代碼行數:52,代碼來源:multi_pose.py

示例11: initLatent

# 需要導入模塊: from utils import debugger [as 別名]
# 或者: from utils.debugger import Debugger [as 別名]
def initLatent(loader, model, Y, nViews, S, AVG = False):
  model.eval()
  nIters = len(loader)
  N = loader.dataset.nImages 
  M = np.zeros((N, ref.J, 3))
  bar = Bar('==>', max=nIters)
  sum_sigma2 = 0
  cnt_sigma2 = 1
  for i, (input, target, meta) in enumerate(loader):
    output = (model(torch.autograd.Variable(input)).data).cpu().numpy()
    G = output.shape[0] / nViews
    output = output.reshape(G, nViews, ref.J, 3)
    if AVG:
      for g in range(G):
        id = int(meta[g * nViews, 1])
        for j in range(nViews):
          RR, tt = horn87(output[g, j].transpose(), output[g, 0].transpose())
          MM = (np.dot(RR, output[g, j].transpose())).transpose().copy()
          M[id] += MM.copy() / nViews
    else:
      for g in range(G):
        #assert meta[g * nViews, 0] > 1 + ref.eps
        p = np.zeros(nViews)
        sigma2 = 0.1
        for j in range(nViews):
          for kk in range(Y.shape[0] / S):
            k = kk * S
            d = Dis(Y[k], output[g, j])
            sum_sigma2 += d 
            cnt_sigma2 += 1
            p[j] += np.exp(- d / 2 / sigma2)
            
        id = int(meta[g * nViews, 1])
        M[id] = output[g, p.argmax()]
        
        if DEBUG and g == 0:
          print 'M[id]', id, M[id], p.argmax()
          debugger = Debugger()
          for j in range(nViews):
            RR, tt = horn87(output[g, j].transpose(), output[g, p.argmax()].transpose())
            MM = (np.dot(RR, output[g, j].transpose())).transpose().copy()
            debugger.addPoint3D(MM, 'b')
            debugger.addImg(input[g * nViews + j].numpy().transpose(1, 2, 0), j)
          debugger.showAllImg()
          debugger.addPoint3D(M[id], 'r')
          debugger.show3D()
        
    
    Bar.suffix = 'Init    : [{0:3}/{1:3}] | Total: {total:} | ETA: {eta:} | Dis: {dis:.6f}'.format(i, nIters, total=bar.elapsed_td, eta=bar.eta_td, dis = sum_sigma2 / cnt_sigma2)
    bar.next()
  bar.finish()
  #print 'mean sigma2', sum_sigma2 / cnt_sigma2
  return M 
開發者ID:xingyizhou,項目名稱:3DKeypoints-DA,代碼行數:55,代碼來源:optim_latent.py


注:本文中的utils.debugger.Debugger方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。