本文整理匯總了Python中utils.create_dir方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.create_dir方法的具體用法?Python utils.create_dir怎麽用?Python utils.create_dir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils
的用法示例。
在下文中一共展示了utils.create_dir方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_ans2label
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def create_ans2label(occurence, name, cache_root='data/cache'):
"""Note that this will also create label2ans.pkl at the same time
occurence: dict {answer -> whatever}
name: prefix of the output file
cache_root: str
"""
ans2label = {}
label2ans = []
label = 0
for answer in occurence:
label2ans.append(answer)
ans2label[answer] = label
label += 1
utils.create_dir(cache_root)
cache_file = os.path.join(cache_root, name+'_ans2label.pkl')
cPickle.dump(ans2label, open(cache_file, 'wb'))
cache_file = os.path.join(cache_root, name+'_label2ans.pkl')
cPickle.dump(label2ans, open(cache_file, 'wb'))
return ans2label
示例2: create_ans2label
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def create_ans2label(occurence, name, cache_root='data/cache'):
"""Note that this will also create label2ans.pkl at the same time
occurence: dict {answer -> whatever}
name: prefix of the output file
cache_root: str
"""
ans2label = {}
label2ans = []
label = 0
for answer in occurence:
label2ans.append(answer)
ans2label[answer] = label
label += 1
utils.create_dir(cache_root)
cache_file = os.path.join(cache_root, name+'_ans2label.pkl')
pickle.dump(ans2label, open(cache_file, 'wb'))
cache_file = os.path.join(cache_root, name+'_label2ans.pkl')
pickle.dump(label2ans, open(cache_file, 'wb'))
return ans2label
示例3: _make_plots_2d
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def _make_plots_2d(self, opts, step, real_points,
fake_points, weights=None, prefix=''):
max_val = opts['gmm_max_val'] * 2
if real_points is None:
real = np.zeros([0, 2])
else:
num_real_points = len(real_points)
real = np.reshape(real_points, [num_real_points, 2])
if fake_points is None:
fake = np.zeros([0, 2])
else:
num_fake_points = len(fake_points)
fake = np.reshape(fake_points, [num_fake_points, 2])
# Plotting the sample
plt.clf()
plt.axis([-max_val, max_val, -max_val, max_val])
plt.scatter(real[:, 0], real[:, 1], color='red', s=20, label='real')
plt.scatter(fake[:, 0], fake[:, 1], color='blue', s=20, label='fake')
plt.legend(loc='upper left')
filename = prefix + 'mixture{:02d}.png'.format(step)
utils.create_dir(opts['work_dir'])
plt.savefig(utils.o_gfile((opts["work_dir"], filename), 'wb'),
format='png')
# Plotting the weights, if provided
if weights is not None:
plt.clf()
plt.axis([-max_val, max_val, -max_val, max_val])
assert len(weights) == len(real)
plt.scatter(real[:, 0], real[:, 1], c=weights, s=40,
edgecolors='face')
plt.colorbar()
filename = prefix + 'weights{:02d}.png'.format(step)
utils.create_dir(opts['work_dir'])
plt.savefig(utils.o_gfile((opts["work_dir"], filename), 'wb'),
format='png')
示例4: _make_plots_1d
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def _make_plots_1d(self, opts, step, real_points,
fake_points, weights=None, prefix=''):
max_val = opts['gmm_max_val'] * 1.2
if real_points is None:
real = np.zeros([0, 2])
else:
num_real_points = len(real_points)
real = np.reshape(real_points, [num_real_points, 1]).flatten()
if fake_points is None:
fake = np.zeros([0, 2])
else:
num_fake_points = len(fake_points)
fake = np.reshape(fake_points, [num_fake_points, 1]).flatten()
# Plotting the sample AND the weights simultaneously
plt.clf()
f, _, _ = plt.hist(real, bins=100, range=(-max_val, max_val),
normed=True, histtype='step',
lw=2, color='red', label='real')
plt.hist(fake, bins=100, range=(-max_val, max_val), normed=True, histtype='step',
lw=2, color='blue', label='fake')
if weights is not None:
assert len(real) == len(weights)
weights_srt = np.array([y for (x, y) in sorted(zip(real, weights))])
real_points_srt = np.array(sorted(real))
max_pdf = np.max(f)
weights_srt = weights_srt / np.max(weights_srt) * max_pdf * 0.8
plt.plot(real_points_srt, weights_srt, lw=3, color='green', label='weights')
plt.legend(loc='upper left')
filename = prefix + 'mixture{:02d}.png'.format(step)
utils.create_dir(opts['work_dir'])
plt.savefig(utils.o_gfile((opts["work_dir"], filename), 'wb'),
format='png')
示例5: download_from_url
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def download_from_url(client_id, url, base_dir, override=False):
"""Download the given playlist"""
downloaded = 0
skipped = 0
errors = 0
# Retrieve playlist data
client = soundcloud.Client(client_id=client_id)
playlist = client.get('/resolve', url=url)
# Create dir
playlist_title = playlist.title
dir = os.path.join(base_dir, playlist_title)
utils.create_dir(dir)
# Download tracks
for trak in playlist.tracks:
try:
#done = song.down(client, track, dir, override)
done = track.download_from_id(client_id, trak['id'], dir, override)
if done: downloaded = downloaded + 1
else: skipped = skipped + 1
except requests.exceptions.HTTPError, err:
if err.response.status_code == 404:
print 'Error: could not download'
errors = errors + 1
else:
raise
示例6: download
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def download(client, track, dir, override=False):
"""Download a track using the given SC client"""
title = fix_title(track.title, track.user['username'])
print '"%s"' % title
if not dir: dir = 'mp3'
utils.create_dir(dir)
file_name = utils.build_file_name(dir, title)
if not override and os.path.exists(file_name):
print "File already exists, skipped"
return False
stream_url = client.get(track.stream_url, allow_redirects=False)
urllib.urlretrieve(stream_url.location, file_name)
return True
示例7: compute_target
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def compute_target(answers_dset, ans2label, name, cache_root='data/cache'):
"""Augment answers_dset with soft score as label
***answers_dset should be preprocessed***
Write result into a cache file
"""
target = []
for ans_entry in answers_dset:
answers = ans_entry['answers']
answer_count = {}
for answer in answers:
answer_ = answer['answer']
answer_count[answer_] = answer_count.get(answer_, 0) + 1
labels = []
scores = []
for answer in answer_count:
if answer not in ans2label:
continue
labels.append(ans2label[answer])
score = get_score(answer_count[answer])
scores.append(score)
target.append({
'question_id': ans_entry['question_id'],
'image_id': ans_entry['image_id'],
'labels': labels,
'scores': scores
})
utils.create_dir(cache_root)
cache_file = os.path.join(cache_root, name+'_target.pkl')
cPickle.dump(target, open(cache_file, 'wb'))
return target
示例8: extract
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def extract(self):
batch_time = utils.AverageMeter()
self.model.eval()
end = time.time()
for batch_idx, (imgs, target, img_files, class_ids) in tqdm.tqdm(
enumerate(self.val_loader), total=len(self.val_loader),
desc='Extract', ncols=80, leave=False):
gc.collect()
if self.cuda:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
output = self.model(imgs) # N C H W torch.Size([1, 1, 401, 600])
if self.flatten_feature:
output = output.view(output.size(0), -1)
output = output.data.cpu().numpy()
assert output.shape[0] == len(img_files)
for i, img_file in enumerate(img_files):
base_name = os.path.splitext(img_file)[0]
feature_file = os.path.join(self.feature_dir, base_name + ".npy")
utils.create_dir(os.path.dirname(feature_file))
np.save(feature_file, output[i])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % self.print_freq == 0:
log_str = 'Extract: [{0}/{1}]\tTime: {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
batch_idx, len(self.val_loader), batch_time=batch_time)
print(log_str)
self.print_log(log_str)
示例9: download_assembly
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def download_assembly(dest_dir, accession, output_format, fetch_wgs, extract_wgs, expanded, quiet=False):
if output_format is None:
output_format = utils.EMBL_FORMAT
assembly_dir = os.path.join(dest_dir, accession)
utils.create_dir(assembly_dir)
# download xml
utils.download_record(assembly_dir, accession, utils.XML_FORMAT)
local_xml = utils.get_destination_file(assembly_dir, accession, utils.XML_FORMAT)
# get wgs and sequence report info
wgs_set, sequence_report = parse_assembly_xml(local_xml)
has_sequence_report = False
# download sequence report
if sequence_report is not None:
has_sequence_report = utils.get_ftp_file(sequence_report, assembly_dir)
# parse sequence report and download sequences
wgs_scaffolds = []
wgs_scaffold_cnt = 0
if has_sequence_report:
wgs_scaffolds = download_sequences(sequence_report.split('/')[-1], assembly_dir, output_format, expanded, quiet)
wgs_scaffold_cnt = len(wgs_scaffolds)
if wgs_scaffold_cnt > 0:
if not quiet:
print 'Assembly contains {} WGS scaffolds, will fetch WGS set'.format(wgs_scaffold_cnt)
fetch_wgs = True
else:
fetch_wgs = True
# download wgs set if needed
if wgs_set is not None and fetch_wgs:
if not quiet:
print 'fetching wgs set'
sequenceGet.download_wgs(assembly_dir, wgs_set, output_format)
# extract wgs scaffolds from WGS file
if wgs_scaffold_cnt > 0 and extract_wgs:
extract_wgs_scaffolds(assembly_dir, wgs_scaffolds, wgs_set, output_format, quiet)
示例10: download_group
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def download_group(accession, group, output_format, dest_dir, fetch_wgs, extract_wgs, fetch_meta, fetch_index, aspera, subtree, expanded):
group_dir = os.path.join(dest_dir, accession)
utils.create_dir(group_dir)
if group == utils.SEQUENCE:
download_sequence_group(accession, output_format, group_dir, subtree, expanded)
else:
download_data_group(group, accession, output_format, group_dir, fetch_wgs, extract_wgs, fetch_meta, fetch_index, aspera, subtree, expanded)
示例11: download_assembly
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def download_assembly(dest_dir, accession, output_format, fetch_wgs, extract_wgs, expanded, quiet=False):
if output_format is None:
output_format = utils.EMBL_FORMAT
assembly_dir = os.path.join(dest_dir, accession)
utils.create_dir(assembly_dir)
# download xml
utils.download_record(assembly_dir, accession, utils.XML_FORMAT)
local_xml = utils.get_destination_file(assembly_dir, accession, utils.XML_FORMAT)
# get wgs and sequence report info
wgs_set, sequence_report = parse_assembly_xml(local_xml)
has_sequence_report = False
# download sequence report
if sequence_report is not None:
has_sequence_report = utils.get_ftp_file(sequence_report, assembly_dir)
# parse sequence report and download sequences
wgs_scaffolds = []
wgs_scaffold_cnt = 0
if has_sequence_report:
wgs_scaffolds = download_sequences(sequence_report.split('/')[-1], assembly_dir, output_format, expanded, quiet)
wgs_scaffold_cnt = len(wgs_scaffolds)
if wgs_scaffold_cnt > 0:
if not quiet:
print ('Assembly contains {} WGS scaffolds, will fetch WGS set'.format(wgs_scaffold_cnt))
fetch_wgs = True
else:
fetch_wgs = True
# download wgs set if needed
if wgs_set is not None and fetch_wgs:
if not quiet:
print ('fetching wgs set')
sequenceGet.download_wgs(assembly_dir, wgs_set, output_format)
# extract wgs scaffolds from WGS file
if wgs_scaffold_cnt > 0 and extract_wgs:
extract_wgs_scaffolds(assembly_dir, wgs_scaffolds, wgs_set, output_format, quiet)
示例12: __do_instance
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def __do_instance(self):
for self.job.visit in xrange(self.job.visits):
ut.create_dir(self.job.path)
wl_log.info("*** Visit #%s to %s ***", self.job.visit, self.job.url)
with self.driver.launch():
try:
self.driver.set_page_load_timeout(cm.SOFT_VISIT_TIMEOUT)
except WebDriverException as seto_exc:
wl_log.error("Setting soft timeout %s", seto_exc)
self.__do_visit()
if self.screenshots:
try:
self.driver.get_screenshot_as_file(self.job.png_file)
except WebDriverException:
wl_log.error("Cannot get screenshot.")
sleep(float(self.job.config['pause_between_visits']))
self.post_visit()
示例13: build_crawl_dirs
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def build_crawl_dirs():
# build crawl directory
ut.create_dir(cm.RESULTS_DIR)
ut.create_dir(cm.CRAWL_DIR)
ut.create_dir(cm.LOGS_DIR)
copyfile(cm.CONFIG_FILE, join(cm.LOGS_DIR, 'config.ini'))
add_symlink(join(cm.RESULTS_DIR, 'latest_crawl'), basename(cm.CRAWL_DIR))
示例14: compute_target
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def compute_target(answers_dset, ans2label, name, cache_root='data/cache'):
"""Augment answers_dset with soft score as label
***answers_dset should be preprocessed***
Write result into a cache file
"""
target = []
for ans_entry in answers_dset:
answers = ans_entry['answers']
answer_count = {}
for answer in answers:
answer_ = answer['answer']
answer_count[answer_] = answer_count.get(answer_, 0) + 1
labels = []
scores = []
for answer in answer_count:
if answer not in ans2label:
continue
labels.append(ans2label[answer])
score = get_score(answer_count[answer])
scores.append(score)
target.append({
'question_id': ans_entry['question_id'],
'image_id': ans_entry['image_id'],
'labels': labels,
'scores': scores
})
utils.create_dir(cache_root)
cache_file = os.path.join(cache_root, name+'_target.pkl')
pickle.dump(target, open(cache_file, 'wb'))
return target
示例15: process
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import create_dir [as 別名]
def process(args, model, eval_loader):
model_path = args.input+'/model%s.pth' % \
('' if 0 > args.epoch else '_epoch%d' % args.epoch)
print('loading %s' % model_path)
model_data = torch.load(model_path)
model = nn.DataParallel(model).cuda()
model.load_state_dict(model_data.get('model_state', model_data))
model.train(False)
logits, qIds = get_logits(model, eval_loader)
results = make_json(logits, qIds, eval_loader)
model_label = '%s%s%d_%s' % (args.model, args.op, args.num_hid, args.label)
if args.logits:
utils.create_dir('logits/'+model_label)
torch.save(logits, 'logits/'+model_label+'/logits%d.pth' % args.index)
utils.create_dir(args.output)
if 0 <= args.epoch:
model_label += '_epoch%d' % args.epoch
with open(args.output+'/%s_%s.json' \
% (args.split, model_label), 'w') as f:
json.dump(results, f)