當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.count_parameters_in_MB方法代碼示例

本文整理匯總了Python中utils.count_parameters_in_MB方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.count_parameters_in_MB方法的具體用法?Python utils.count_parameters_in_MB怎麽用?Python utils.count_parameters_in_MB使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.count_parameters_in_MB方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_cifar10

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))    
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:43,代碼來源:train_search.py

示例2: build_cifar100

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))    
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:43,代碼來源:train_search.py

示例3: build_cifar10

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:40,代碼來源:test_cifar.py

示例4: build_cifar100

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar100(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 100, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)

    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    
    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:41,代碼來源:test_cifar.py

示例5: build_cifar10

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size, args.autoaugment)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)

    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:39,代碼來源:train_cifar.py

示例6: build_cifar10

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform)
    
    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train)) 
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:43,代碼來源:train_search.py

示例7: build_cifar100

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))    
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:43,代碼來源:train_search.py

示例8: build_cifar10

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)

    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
開發者ID:renqianluo,項目名稱:NAO_pytorch,代碼行數:39,代碼來源:train_cifar.py

示例9: num_parameters

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def num_parameters(self):
    params = count_parameters_in_MB(self.netG_A)
    params+= count_parameters_in_MB(self.netG_B)
    params+= count_parameters_in_MB(self.netD_B)
    params+= count_parameters_in_MB(self.netD_B)
    return params 
開發者ID:D-X-Y,項目名稱:landmark-detection,代碼行數:8,代碼來源:itn.py

示例10: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()
  utils.load(model, args.model_path)

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  _, test_transform = utils._data_transforms_cifar10(args)
  test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

  test_queue = torch.utils.data.DataLoader(
      test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  model.drop_path_prob = args.drop_path_prob
  test_acc, test_obj = infer(test_queue, model, criterion)
  logging.info('test_acc %f', test_acc) 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:35,代碼來源:test.py

示例11: initialize_model

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def initialize_model(self):
        """
        Initialize model, may change across different model.
        :return:
        """
        args = self.args
        model = self.model_fn(args)
        if args.gpus > 0:
            if self.args.gpus == 1:
                model = model.cuda()
                self.parallel_model = model
            else:
                self.model = model
                self.parallel_model = nn.DataParallel(self.model).cuda()
                # IPython.embed(header='checking replicas and others.')
        else:
            self.parallel_model = model
        # rewrite the pointer
        model = self.parallel_model

        logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

        optimizer = torch.optim.SGD(
            model.parameters(),
            args.learning_rate,
            momentum=args.momentum,
            weight_decay=args.weight_decay)

        # scheduler as Cosine.
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, float(args.epochs), eta_min=args.learning_rate_min)
        return model, optimizer, scheduler 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:34,代碼來源:cnn_general_search_policies.py

示例12: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def main():
    if not torch.cuda.is_available():
        logging.info('no gpu device available')
        sys.exit(1)

    np.random.seed(args.seed)
    torch.cuda.set_device(args.gpu)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled=True
    torch.cuda.manual_seed(args.seed)
    logging.info('gpu device = %d' % args.gpu)
    logging.info("args = %s", args)

    genotype = eval("genotypes.%s" % args.arch)
    model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
    model = model.cuda()
    utils.load(model, args.model_path)

    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()

    _, test_transform = utils.data_transforms_cifar10(args)
    test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

    test_queue = torch.utils.data.DataLoader(
            test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

    model.drop_path_prob = args.drop_path_prob
    test_acc, test_obj = infer(test_queue, model, criterion)
    logging.info('test_acc %f', test_acc) 
開發者ID:antoyang,項目名稱:NAS-Benchmark,代碼行數:35,代碼來源:test.py

示例13: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()
  utils.load(model, args.model_path)

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  _, test_transform = utils._data_transforms_cifar10(args)
  test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

  test_queue = torch.utils.data.DataLoader(
      test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  model.drop_path_prob = args.drop_path_prob
  with torch.no_grad():
    test_acc, test_obj = infer(test_queue, model, criterion)
  logging.info('test_acc %f', test_acc) 
開發者ID:lightaime,項目名稱:sgas,代碼行數:36,代碼來源:test.py

示例14: main

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)
  cudnn.enabled=True
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype)
  model = nn.DataParallel(model)
  model = model.cuda()
  model.load_state_dict(torch.load(args.model_path)['state_dict'])

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  validdir = os.path.join(args.data, 'val')
  normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  valid_data = dset.ImageFolder(
    validdir,
    transforms.Compose([
      transforms.Resize(256),
      transforms.CenterCrop(224),
      transforms.ToTensor(),
      normalize,
    ]))

  valid_queue = torch.utils.data.DataLoader(
    valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=False, num_workers=4)

  model.module.drop_path_prob = 0.0
  valid_acc_top1, valid_acc_top5, valid_obj = infer(valid_queue, model, criterion)
  logging.info('Valid_acc_top1 %f', valid_acc_top1)
  logging.info('Valid_acc_top5 %f', valid_acc_top5) 
開發者ID:lightaime,項目名稱:sgas,代碼行數:38,代碼來源:test_imagenet.py

示例15: initialize_model

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import count_parameters_in_MB [as 別名]
def initialize_model(self):
        """
        Initialize model, may change across different model.
        :return:
        """
        args = self.args
        # over ride the model_fn
        self.train_fn = None
        self.eval_fn = nao_model_validation_nasbench

        if self.args.search_space == 'nasbench':
            self.model_fn = NasBenchNetSearchENAS
            self.fixmodel_fn = NasBenchNet
            model = self.model_fn(args)
            utils = enas_nasbench_utils
            enas = MicroControllerNasbench(args=args)
        else:
            utils = enas_utils
            self.model_fn = ENASWSCNN
            self.fixmodel_fn = None
            model = self.model_fn(args)

            enas = MicroController(args)

        enas = enas.cuda()
        logging.info("ENAS RNN sampler param size = %fMB", project_utils.count_parameters_in_MB(enas))
        self.controller = enas

        if args.gpus > 0:
            if self.args.gpus == 1:
                model = model.cuda()
                self.parallel_model = model
            else:
                self.model = model
                self.parallel_model = nn.DataParallel(self.model).cuda()
                # IPython.embed(header='checking replicas and others.')
        else:
            self.parallel_model = model
        # rewrite the pointer
        model = self.parallel_model
        logging.info("param size = %fMB", project_utils.count_parameters_in_MB(model))

        optimizer = torch.optim.SGD(
            model.parameters(),
            args.child_lr_max,
            momentum=0.9,
            weight_decay=args.child_l2_reg,
        )

        controller_optimizer = torch.optim.Adam(
            enas.parameters(),
            args.controller_lr,
            betas=(0.1, 0.999),
            eps=1e-3,
        )

        # scheduler as Cosine.
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, args.child_lr_min)
        return model, optimizer, scheduler, enas, controller_optimizer 
開發者ID:kcyu2014,項目名稱:eval-nas,代碼行數:61,代碼來源:enas_search_policy.py


注:本文中的utils.count_parameters_in_MB方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。