當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.combine_images方法代碼示例

本文整理匯總了Python中utils.combine_images方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.combine_images方法的具體用法?Python utils.combine_images怎麽用?Python utils.combine_images使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.combine_images方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import combine_images [as 別名]
def test(model, data, args):
    x_test, y_test = data
    print('Testing the model...')
    y_pred, y_pred0, y_pred1, y_pred2, y_pred3, x_recon = model.predict(x_test, batch_size=100)

    print('Test Accuracy (All DigitCaps): ', 100.0*np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))

    print('Test Accuracy (Merged DigitCaps): ', 100.0*np.sum(np.argmax(y_pred0, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))

    print('Test Accuracy (Level 1 DigitCaps): ', 100.0*np.sum(np.argmax(y_pred1, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))

    print('Test Accuracy (Level 2 DigitCaps): ', 100.0*np.sum(np.argmax(y_pred2, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))

    print('Test Accuracy (Level 3 DigitCaps): ', 100.0*np.sum(np.argmax(y_pred3, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))

    img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))
    image = img * 255
    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")
    print()
    print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)
    plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))
    plt.show() 
開發者ID:ssrp,項目名稱:Multi-level-DCNet,代碼行數:24,代碼來源:3leveldcnet.py

示例2: test

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import combine_images [as 別名]
def test(model, data):
    x_test, y_test = data
    y_pred, x_recon = model.predict(x_test, batch_size=100)
    print('-'*50)
    print('Test acc:', np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/y_test.shape[0])

    import matplotlib.pyplot as plt
    from utils import combine_images
    from PIL import Image

    img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))
    image = img * 255
    Image.fromarray(image.astype(np.uint8)).save("real_and_recon.png")
    print()
    print('Reconstructed images are saved to ./real_and_recon.png')
    print('-'*50)
    plt.imshow(plt.imread("real_and_recon.png", ))
    plt.show() 
開發者ID:XifengGuo,項目名稱:CapsNet-Fashion-MNIST,代碼行數:20,代碼來源:capsulenet.py

示例3: manipulate_latent

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import combine_images [as 別名]
def manipulate_latent(model, data, args):
    print('-'*30 + 'Begin: manipulate' + '-'*30)
    x_test, y_test = data
    index = np.argmax(y_test, 1) == args.digit
    number = np.random.randint(low=0, high=sum(index) - 1)
    x, y = x_test[index][number], y_test[index][number]
    x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)
    noise = np.zeros([1, 10, 16])
    x_recons = []
    for dim in range(16):
        for r in [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25]:
            tmp = np.copy(noise)
            tmp[:,:,dim] = r
            x_recon = model.predict([x, y, tmp])
            x_recons.append(x_recon)

    x_recons = np.concatenate(x_recons)

    img = combine_images(x_recons, height=16)
    image = img*255
    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + '/manipulate-%d.png' % args.digit)
    print('manipulated result saved to %s/manipulate-%d.png' % (args.save_dir, args.digit))
    print('-' * 30 + 'End: manipulate' + '-' * 30) 
開發者ID:XifengGuo,項目名稱:CapsNet-Keras,代碼行數:25,代碼來源:capsulenet.py

示例4: show_reconstruction

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import combine_images [as 別名]
def show_reconstruction(model, test_loader, n_images, args):
    import matplotlib.pyplot as plt
    from utils import combine_images
    from PIL import Image
    import numpy as np

    model.eval()
    for x, _ in test_loader:
        x = Variable(x[:min(n_images, x.size(0))].cuda(), volatile=True)
        _, x_recon = model(x)
        data = np.concatenate([x.data, x_recon.data])
        img = combine_images(np.transpose(data, [0, 2, 3, 1]))
        image = img * 255
        Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")
        print()
        print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)
        print('-' * 70)
        plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png", ))
        plt.show()
        break 
開發者ID:XifengGuo,項目名稱:CapsNet-Pytorch,代碼行數:22,代碼來源:capsulenet.py

示例5: test

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import combine_images [as 別名]
def test(model, data, args):
    x_test, y_test = data
    print('Testing the model...')
    y_pred, x_recon = model.predict(x_test, batch_size=100)

    print('Test Accuracy: ', 100.0*np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/(1.0*y_test.shape[0]))

    img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))
    image = img * 255
    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")
    print()
    print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)
    plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))
    plt.show() 
開發者ID:ssrp,項目名稱:Multi-level-DCNet,代碼行數:16,代碼來源:dcnet.py

示例6: save_output_image

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import combine_images [as 別名]
def save_output_image(self,samples,image_name):
        """
        Visualizing and saving images in the .png format 
        :param samples: images to be visualized
        :param image_name: name of the saved .png file
        """
        if not os.path.exists(args.save_dir+"/images"):
            os.makedirs(args.save_dir+"/images")
        img = combine_images(samples)
        img = img * 255
        Image.fromarray(img.astype(np.uint8)).save(args.save_dir + "/images/"+image_name+".png")
        print(image_name, "Image saved.") 
開發者ID:vinojjayasundara,項目名稱:textcaps,代碼行數:14,代碼來源:textcaps_emnist_bal.py

示例7: test

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import combine_images [as 別名]
def test(model, data, args):
    x_test, y_test = data
    y_pred, x_recon = model.predict(x_test, batch_size=100)
    print('-'*30 + 'Begin: test' + '-'*30)
    print('Test acc:', np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/y_test.shape[0])

    img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))
    image = img * 255
    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")
    print()
    print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)
    print('-' * 30 + 'End: test' + '-' * 30)
    plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))
    plt.show() 
開發者ID:XifengGuo,項目名稱:CapsNet-Keras,代碼行數:16,代碼來源:capsulenet.py


注:本文中的utils.combine_images方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。