當前位置: 首頁>>代碼示例>>Python>>正文


Python box_utils.matrix_iou方法代碼示例

本文整理匯總了Python中utils.box_utils.matrix_iou方法的典型用法代碼示例。如果您正苦於以下問題:Python box_utils.matrix_iou方法的具體用法?Python box_utils.matrix_iou怎麽用?Python box_utils.matrix_iou使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.box_utils的用法示例。


在下文中一共展示了box_utils.matrix_iou方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _crop

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import matrix_iou [as 別名]
def _crop(image, boxes, labels):
    height, width, _ = image.shape

    if len(boxes)== 0:
        return image, boxes, labels

    while True:
        mode = random.choice((
            None,
            (0.1, None),
            (0.3, None),
            (0.5, None),
            (0.7, None),
            (0.9, None),
            (None, None),
        ))

        if mode is None:
            return image, boxes, labels

        min_iou, max_iou = mode
        if min_iou is None:
            min_iou = float('-inf')
        if max_iou is None:
            max_iou = float('inf')

        for _ in range(50):
            scale = random.uniform(0.3,1.)
            min_ratio = max(0.5, scale*scale)
            max_ratio = min(2, 1. / scale / scale)
            ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
            w = int(scale * ratio * width)
            h = int((scale / ratio) * height)


            l = random.randrange(width - w)
            t = random.randrange(height - h)
            roi = np.array((l, t, l + w, t + h))

            iou = matrix_iou(boxes, roi[np.newaxis])
            
            if not (min_iou <= iou.min() and iou.max() <= max_iou):
                continue

            image_t = image[roi[1]:roi[3], roi[0]:roi[2]]

            centers = (boxes[:, :2] + boxes[:, 2:]) / 2
            mask = np.logical_and(roi[:2] < centers, centers < roi[2:]) \
                     .all(axis=1)
            boxes_t = boxes[mask].copy()
            labels_t = labels[mask].copy()
            if len(boxes_t) == 0:
                continue

            boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
            boxes_t[:, :2] -= roi[:2]
            boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
            boxes_t[:, 2:] -= roi[:2]

            return image_t, boxes_t,labels_t 
開發者ID:yqyao,項目名稱:DRFNet,代碼行數:62,代碼來源:data_augment.py

示例2: _crop

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import matrix_iou [as 別名]
def _crop(image, boxes, labels):
    height, width, _ = image.shape

    if len(boxes) == 0:
        return image, boxes, labels

    while True:
        mode = random.choice((
            None,
            (0.1, None),
            (0.3, None),
            (0.5, None),
            (0.7, None),
            (0.9, None),
            (None, None),
        ))

        if mode is None:
            return image, boxes, labels

        min_iou, max_iou = mode
        if min_iou is None:
            min_iou = float('-inf')
        if max_iou is None:
            max_iou = float('inf')

        for _ in range(50):
            scale = random.uniform(0.3, 1.)
            min_ratio = max(0.5, scale * scale)
            max_ratio = min(2, 1. / scale / scale)
            ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
            w = int(scale * ratio * width)
            h = int((scale / ratio) * height)

            l = random.randrange(width - w)
            t = random.randrange(height - h)
            roi = np.array((l, t, l + w, t + h))

            iou = matrix_iou(boxes, roi[np.newaxis])

            if not (min_iou <= iou.min() and iou.max() <= max_iou):
                continue

            image_t = image[roi[1]:roi[3], roi[0]:roi[2]]

            centers = (boxes[:, :2] + boxes[:, 2:]) / 2
            mask = np.logical_and(roi[:2] < centers, centers < roi[2:]) \
                     .all(axis=1)
            boxes_t = boxes[mask].copy()
            labels_t = labels[mask].copy()
            if len(boxes_t) == 0:
                continue

            boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
            boxes_t[:, :2] -= roi[:2]
            boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
            boxes_t[:, 2:] -= roi[:2]

            return image_t, boxes_t, labels_t 
開發者ID:JialeCao001,項目名稱:HSD,代碼行數:61,代碼來源:data_augment.py

示例3: _crop

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import matrix_iou [as 別名]
def _crop(image, boxes, labels):
    height, width, _ = image.shape

    if len(boxes)== 0:
        return image, boxes, labels

    while True:
        mode = random.choice((
            None,
            (0.1, None),
            (0.3, None),
            (0.5, None),
            (0.7, None),
            (0.9, None),
            (None, None),
        ))

        if mode is None:
            return image, boxes, labels

        min_iou, max_iou = mode
        if min_iou is None:
            min_iou = float('-inf')
        if max_iou is None:
            max_iou = float('inf')

        for _ in range(50):
            scale = random.uniform(0.3,1.)
            min_ratio = max(0.5, scale*scale)
            max_ratio = min(2, 1. / scale / scale)
            ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
            w = int(scale * ratio * width)
            h = int((scale / ratio) * height)

            l = random.randrange(width - w)
            t = random.randrange(height - h)
            roi = np.array((l, t, l + w, t + h))

            iou = matrix_iou(boxes, roi[np.newaxis])
            
            if not (min_iou <= iou.min() and iou.max() <= max_iou):
                continue

            image_t = image[roi[1]:roi[3], roi[0]:roi[2]]

            centers = (boxes[:, :2] + boxes[:, 2:]) / 2
            mask = np.logical_and(roi[:2] < centers, centers < roi[2:]) \
                     .all(axis=1)
            boxes_t = boxes[mask].copy()
            labels_t = labels[mask].copy()
            if len(boxes_t) == 0:
                continue

            boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
            boxes_t[:, :2] -= roi[:2]
            boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
            boxes_t[:, 2:] -= roi[:2]

            return image_t, boxes_t,labels_t 
開發者ID:vaesl,項目名稱:LRF-Net,代碼行數:61,代碼來源:data_augment.py

示例4: _crop

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import matrix_iou [as 別名]
def _crop(image, boxes, labels):
    height, width, _ = image.shape

    if len(boxes) == 0:
        return image, boxes, labels

    while True:
        mode = random.choice((
            None,
            (0.1, None),
            (0.3, None),
            (0.5, None),
            (0.7, None),
            (0.9, None),
            (None, None),
        ))

        if mode is None:
            return image, boxes, labels

        min_iou, max_iou = mode
        if min_iou is None:
            min_iou = float('-inf')
        if max_iou is None:
            max_iou = float('inf')

        for _ in range(50):
            scale = random.uniform(0.3, 1.)
            min_ratio = max(0.5, scale * scale)
            max_ratio = min(2, 1. / scale / scale)
            ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
            w = int(scale * ratio * width)
            h = int((scale / ratio) * height)

            l = random.randrange(width - w)
            t = random.randrange(height - h)
            roi = np.array((l, t, l + w, t + h))

            iou = matrix_iou(boxes, roi[np.newaxis])

            if not (min_iou <= iou.min() and iou.max() <= max_iou):
                continue

            image_t = image[roi[1]:roi[3], roi[0]:roi[2]]

            centers = (boxes[:, :2] + boxes[:, 2:]) / 2
            mask = np.logical_and(roi[:2] < centers, centers < roi[2:]) \
                .all(axis=1)
            boxes_t = boxes[mask].copy()
            labels_t = labels[mask].copy()
            if len(boxes_t) == 0:
                continue

            boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
            boxes_t[:, :2] -= roi[:2]
            boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
            boxes_t[:, 2:] -= roi[:2]

            return image_t, boxes_t, labels_t 
開發者ID:lzx1413,項目名稱:PytorchSSD,代碼行數:61,代碼來源:data_augment.py


注:本文中的utils.box_utils.matrix_iou方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。