當前位置: 首頁>>代碼示例>>Python>>正文


Python box_utils.decode方法代碼示例

本文整理匯總了Python中utils.box_utils.decode方法的典型用法代碼示例。如果您正苦於以下問題:Python box_utils.decode方法的具體用法?Python box_utils.decode怎麽用?Python box_utils.decode使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.box_utils的用法示例。


在下文中一共展示了box_utils.decode方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def forward(self, x):
        l_data, m_data, h_data = x
        l_grid_wh = (l_data.size(3), l_data.size(2))
        m_grid_wh = (m_data.size(3), m_data.size(2))
        h_grid_wh = (h_data.size(3), h_data.size(2))

        pred_l, stride_l = permute_sigmoid(l_data, self.input_wh, 3, self.num_classes)
        pred_m, stride_m = permute_sigmoid(m_data, self.input_wh, 3, self.num_classes)
        pred_h, stride_h = permute_sigmoid(h_data, self.input_wh, 3, self.num_classes)

        anchors1 = self.anchors[self.anchors_mask[0][0]: self.anchors_mask[0][-1]+1]
        anchors2 = self.anchors[self.anchors_mask[1][0]: self.anchors_mask[1][-1]+1]
        anchors3 = self.anchors[self.anchors_mask[2][0]: self.anchors_mask[2][-1]+1]
        
        decode_l = decode(pred_l.detach(), self.input_wh, anchors1, self.num_classes, stride_l)
        decode_m = decode(pred_m.detach(), self.input_wh, anchors2, self.num_classes, stride_m)
        decode_h = decode(pred_h.detach(), self.input_wh, anchors3, self.num_classes, stride_h)
        decode_pred = torch.cat((decode_l, decode_m, decode_h), 1)

        return decode_pred 
開發者ID:yqyao,項目名稱:YOLOv3_Pytorch,代碼行數:22,代碼來源:yolo.py

示例2: forward

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def forward(self, loc_data, conf_data, prior_data):
        """
        Args:
            loc_data: (tensor) Loc preds from loc layers
                Shape: [batch,num_priors*4]
            conf_data: (tensor) Shape: Conf preds from conf layers
                Shape: [batch*num_priors,num_classes]
            prior_data: (tensor) Prior boxes and variances from priorbox layers
                Shape: [1,num_priors,4]
        """
        num = loc_data.size(0)  # batch size
        num_priors = prior_data.size(0)
        output = torch.zeros(num, self.num_classes, self.top_k, 5)
        conf_preds = conf_data.view(num, num_priors,
                                    self.num_classes).transpose(2, 1)

        # Decode predictions into bboxes.
        for i in range(num):
            decoded_boxes = decode(loc_data[i], prior_data, self.variance)
            # For each class, perform nms
            conf_scores = conf_preds[i].clone()

            for cl in range(1, self.num_classes):
                c_mask = conf_scores[cl].gt(self.conf_thresh)
                scores = conf_scores[cl][c_mask]
                if scores.dim() == 0:
                    continue
                l_mask = c_mask.unsqueeze(1).expand_as(decoded_boxes)
                boxes = decoded_boxes[l_mask].view(-1, 4)
                # idx of highest scoring and non-overlapping boxes per class
                ids, count = nms(boxes, scores, self.nms_thresh, self.top_k)
                output[i, cl, :count] = \
                    torch.cat((scores[ids[:count]].unsqueeze(1),
                               boxes[ids[:count]]), 1)
        flt = output.contiguous().view(num, -1, 5)
        _, idx = flt[:, :, 0].sort(1, descending=True)
        _, rank = idx.sort(1)
        flt[(rank < self.top_k).unsqueeze(-1).expand_as(flt)].fill_(0)
        return output 
開發者ID:vaesl,項目名稱:LRF-Net,代碼行數:41,代碼來源:detection.py

示例3: forward

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def forward(self, predictions):
        """
        Args:
            loc_data: (tensor) Loc preds from loc layers
                Shape: [batch,num_priors*4]
            conf_data: (tensor) Shape: Conf preds from conf layers
                Shape: [batch*num_priors,num_classes]
            prior_data: (tensor) Prior boxes and variances from priorbox layers
                Shape: [1,num_priors,4]
        """
        # loc, conf, priors = predictions
        if self.use_arm:
            arm_loc, arm_conf, loc, conf, priors = predictions
            arm_loc_data = arm_loc.data
            arm_conf_data = arm_conf.data
            arm_object_conf = arm_conf_data[:, 1:]
            no_object_index = arm_object_conf <= 0.01 #self.object_score
            conf.data[no_object_index.expand_as(conf.data)] = 0
        else:
            loc, conf, priors = predictions  
        loc_data = loc.data
        conf_data = conf.data
        prior_data = priors.data

        num = loc_data.size(0)  # batch size
        self.num_priors = prior_data.size(0)

        self.boxes = torch.zeros(1, self.num_priors, 4)
        self.scores = torch.zeros(1, self.num_priors, self.num_classes)

        if num == 1:
            # size batch x num_classes x num_priors
            conf_preds = conf_data.unsqueeze(0)

        else:
            conf_preds = conf_data.view(num, num_priors,
                                        self.num_classes)
            self.boxes.expand_(num, self.num_priors, 4)
            self.scores.expand_(num, self.num_priors, self.num_classes)

        # Decode predictions into bboxes.
        for i in range(num):
            if self.use_arm:
                default = decode(arm_loc_data[i], prior_data, self.variance)
                default = center_size(default)
                decoded_boxes = decode(loc_data[i], default, self.variance)
                # decoded_boxes = decode((loc_data[i]+arm_loc_data[i]), prior_data, self.variance)
            else:
                decoded_boxes = decode(loc_data[i], prior_data, self.variance)
            # For each class, perform nms
            conf_scores = conf_preds[i].clone()
            '''
            c_mask = conf_scores.gt(self.thresh)
            decoded_boxes = decoded_boxes[c_mask]
            conf_scores = conf_scores[c_mask]
            '''

            self.boxes[i] = decoded_boxes
            self.scores[i] = conf_scores

        return self.boxes, self.scores 
開發者ID:yqyao,項目名稱:DRFNet,代碼行數:63,代碼來源:detection.py

示例4: forward

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def forward(self, predictions, prior):
        """
        Args:
            loc_data: (tensor) Loc preds from loc layers
                Shape: [batch,num_priors*4]
            conf_data: (tensor) Shape: Conf preds from conf layers
                Shape: [batch*num_priors,num_classes]
            prior_data: (tensor) Prior boxes and variances from priorbox layers
                Shape: [1,num_priors,4]
        """

        loc, conf = predictions

        loc_data = loc.data
        conf_data = conf.data
        prior_data = prior.data
        num = loc_data.size(0)  # batch size
        self.num_priors = prior_data.size(0)
        self.boxes = torch.zeros(1, self.num_priors, 4)
        self.scores = torch.zeros(1, self.num_priors, self.num_classes)
        if loc_data.is_cuda:
            self.boxes = self.boxes.cuda()
            self.scores = self.scores.cuda()

        if num == 1:
            # size batch x num_classes x num_priors
            conf_preds = conf_data.unsqueeze(0)

        else:
            conf_preds = conf_data.view(num, num_priors,
                                        self.num_classes)
            self.boxes.expand_(num, self.num_priors, 4)
            self.scores.expand_(num, self.num_priors, self.num_classes)

        # Decode predictions into bboxes.
        for i in range(num):
            decoded_boxes = decode(loc_data[i], prior_data, self.variance)
            conf_scores = conf_preds[i].clone()

            self.boxes[i] = decoded_boxes
            self.scores[i] = conf_scores

        return self.boxes, self.scores 
開發者ID:qijiezhao,項目名稱:M2Det,代碼行數:45,代碼來源:detection.py

示例5: forward

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def forward(self, predictions):
        """
        Args:
            loc_data: (tensor) Loc preds from loc layers
                Shape: [batch,num_priors*4]
            conf_data: (tensor) Shape: Conf preds from conf layers
                Shape: [batch*num_priors,num_classes]
            prior_data: (tensor) Prior boxes and variances from priorbox layers
                Shape: [1,num_priors,4]
        """
        # loc, conf, priors = predictions
        if self.cfg.MODEL.CASCADE:
            arm_loc, arm_conf, loc, conf, priors = predictions
            arm_conf = F.softmax(arm_conf.view(-1, 2), 1)
            conf = F.softmax(conf.view(-1, self.num_classes), 1)
            arm_loc_data = arm_loc.data
            arm_conf_data = arm_conf.data
            arm_object_conf = arm_conf_data[:, 1:]
            no_object_index = arm_object_conf <= self.object_score
            # print(torch.sum(no_object_index) / loc.data.size(0), loc.data.size(1))
            conf.data[no_object_index.expand_as(conf.data)] = 0
        else:
            loc, conf, priors = predictions
            conf = F.softmax(conf.view(-1, self.num_classes), 1)
        loc_data = loc.data
        conf_data = conf.data
        # prior_data = priors.data
        prior_data = priors[:loc_data.size(1), :]

        num = loc_data.size(0)  # batch size

        self.num_priors = prior_data.size(0)

        self.boxes = torch.zeros(num, self.num_priors, 4)
        self.scores = torch.zeros(num, self.num_priors, self.num_classes)
        conf_preds = conf_data.view(num, self.num_priors, self.num_classes)
        batch_prior = prior_data.view(-1, self.num_priors, 4).expand(
            (num, self.num_priors, 4))
        batch_prior = batch_prior.contiguous().view(-1, 4)
        if self.cfg.MODEL.CASCADE:
            default = decode(
                arm_loc_data.view(-1, 4), batch_prior, self.variance)
            default = center_size(default)
            decoded_boxes = decode(
                loc_data.view(-1, 4), default, self.variance1)

        else:
            decoded_boxes = decode(
                loc_data.view(-1, 4), batch_prior, self.variance)

        self.scores = conf_preds.view(num, self.num_priors, self.num_classes)
        self.boxes = decoded_boxes.view(num, self.num_priors, 4)
        return self.boxes, self.scores 
開發者ID:JialeCao001,項目名稱:HSD,代碼行數:55,代碼來源:detection.py

示例6: detect_face

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def detect_face(net, img, resize):
    if resize != 1:
        img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    #img = img[[2, 1, 0], :, :]
    img = torch.from_numpy(img).unsqueeze(0)
    if args.cuda:
        img = img.cuda()
        scale = scale.cuda()

    out = net(img)  # forward pass
    priorbox = PriorBox(cfg, out[2], (im_height, im_width), phase='test')
    priors = priorbox.forward()
    if args.cuda:
        priors = priors.cuda()
    loc, conf, _ = out
    print(loc.size(), conf.size())
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.data.cpu().numpy()[:, 1]

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    scores = scores[order]
    #print(boxes)

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
    keep = nms(dets, args.nms_threshold, force_cpu=args.cpu)
    dets = dets[keep, :]
    #print(dets)

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    return dets 
開發者ID:luuuyi,項目名稱:S3FD.PyTorch,代碼行數:48,代碼來源:demo_s3fd.py

示例7: detect_face

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def detect_face(net, img, resize):
    if resize != 1:
        img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    if args.cuda:
        img = img.cuda()
        scale = scale.cuda()

    out = net(img)  # forward pass
    priorbox = PriorBox(cfg, out[2], (im_height, im_width), phase='test')
    priors = priorbox.forward()
    if args.cuda:
        priors = priors.cuda()
    loc, conf, _ = out
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.data.cpu().numpy()[:, 1]

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    scores = scores[order]
    #print(boxes)

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
    keep = nms(dets, args.nms_threshold, force_cpu=args.cpu)
    dets = dets[keep, :]
    #print(dets)

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    return dets 
開發者ID:luuuyi,項目名稱:S3FD.PyTorch,代碼行數:46,代碼來源:test_s3fd_wider.py

示例8: forward

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def forward(self, predictions):
        """
        Args:
            loc_data: (tensor) Loc preds from loc layers
                Shape: [batch,num_priors*4]
            conf_data: (tensor) Shape: Conf preds from conf layers
                Shape: [batch*num_priors,num_classes]
            prior_data: (tensor) Prior boxes and variances from priorbox layers
                Shape: [1,num_priors,4]
        """
        # loc, conf, priors = predictions
        if self.cfg.MODEL.REFINE:
            arm_loc, arm_conf, loc, conf, priors = predictions
            arm_conf = F.softmax(arm_conf.view(-1, 2), 1)
            conf = F.softmax(conf.view(-1, self.num_classes), 1)
            arm_loc_data = arm_loc.data
            arm_conf_data = arm_conf.data
            arm_object_conf = arm_conf_data[:, 1:]
            no_object_index = arm_object_conf <= self.object_score
            conf.data[no_object_index.expand_as(conf.data)] = 0
        else:
            loc, conf, priors = predictions
            conf = F.softmax(conf.view(-1, self.num_classes), 1)
        loc_data = loc.data
        conf_data = conf.data
        # prior_data = priors.data
        prior_data = priors[:loc_data.size(1), :]

        num = loc_data.size(0)  # batch size

        self.num_priors = prior_data.size(0)

        self.boxes = torch.zeros(num, self.num_priors, 4)
        self.scores = torch.zeros(num, self.num_priors, self.num_classes)
        conf_preds = conf_data.view(num, self.num_priors, self.num_classes)
        batch_prior = prior_data.view(-1, self.num_priors, 4).expand(
            (num, self.num_priors, 4))
        batch_prior = batch_prior.contiguous().view(-1, 4)
        if self.cfg.MODEL.REFINE:
            default = decode(
                arm_loc_data.view(-1, 4), batch_prior, self.variance)
            default = center_size(default)
            decoded_boxes = decode(
                loc_data.view(-1, 4), default, self.variance)
        else:
            decoded_boxes = decode(
                loc_data.view(-1, 4), batch_prior, self.variance)

        self.scores = conf_preds.view(num, self.num_priors, self.num_classes)
        self.boxes = decoded_boxes.view(num, self.num_priors, 4)
        return self.boxes, self.scores 
開發者ID:yqyao,項目名稱:SSD_Pytorch,代碼行數:53,代碼來源:detection.py

示例9: forward

# 需要導入模塊: from utils import box_utils [as 別名]
# 或者: from utils.box_utils import decode [as 別名]
def forward(self, predictions, prior, arm_data=None):
        """
        Args:
            loc_data: (tensor) Loc preds from loc layers
                Shape: [batch,num_priors*4]
            conf_data: (tensor) Shape: Conf preds from conf layers
                Shape: [batch*num_priors,num_classes]
            prior_data: (tensor) Prior boxes and variances from priorbox layers
                Shape: [1,num_priors,4]
        """

        loc, conf = predictions
        loc_data = loc.data
        conf_data = conf.data
        prior_data = prior.data
        num = loc_data.size(0)  # batch size
        if arm_data:
            arm_loc, arm_conf = arm_data
            arm_loc_data = arm_loc.data
            arm_conf_data = arm_conf.data
            arm_object_conf = arm_conf_data[:, 1:]
            no_object_index = arm_object_conf <= self.object_score
            conf_data[no_object_index.expand_as(conf_data)] = 0

        self.num_priors = prior_data.size(0)
        self.boxes = torch.zeros(num, self.num_priors, 4)
        self.scores = torch.zeros(num, self.num_priors, self.num_classes)

        if num == 1:
            # size batch x num_classes x num_priors
            conf_preds = conf_data.unsqueeze(0)

        else:
            conf_preds = conf_data.view(num, self.num_priors,
                                        self.num_classes)
            self.boxes.expand(num, self.num_priors, 4)
            self.scores.expand(num, self.num_priors, self.num_classes)
        # Decode predictions into bboxes.
        for i in range(num):
            if arm_data:
                default = decode(arm_loc_data[i], prior_data, self.variance)
                default = center_size(default)
            else:
                default = prior_data
            decoded_boxes = decode(loc_data[i], default, self.variance)
            # For each class, perform nms
            conf_scores = conf_preds[i].clone()
            '''
            c_mask = conf_scores.gt(self.thresh)
            decoded_boxes = decoded_boxes[c_mask]
            conf_scores = conf_scores[c_mask]
            '''

            self.boxes[i] = decoded_boxes
            self.scores[i] = conf_scores

        return self.boxes, self.scores 
開發者ID:lzx1413,項目名稱:PytorchSSD,代碼行數:59,代碼來源:detection.py


注:本文中的utils.box_utils.decode方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。