當前位置: 首頁>>代碼示例>>Python>>正文


Python blob.zeros方法代碼示例

本文整理匯總了Python中utils.blob.zeros方法的典型用法代碼示例。如果您正苦於以下問題:Python blob.zeros方法的具體用法?Python blob.zeros怎麽用?Python blob.zeros使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.blob的用法示例。


在下文中一共展示了blob.zeros方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _expand_bbox_targets

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import zeros [as 別名]
def _expand_bbox_targets(bbox_target_data):
    """Bounding-box regression targets are stored in a compact form in the
    roidb.

    This function expands those targets into the 4-of-4*K representation used
    by the network (i.e. only one class has non-zero targets). The loss weights
    are similarly expanded.

    Returns:
        bbox_target_data (ndarray): N x 4K blob of regression targets
        bbox_inside_weights (ndarray): N x 4K blob of loss weights
    """
    num_bbox_reg_classes = cfg.MODEL.NUM_CLASSES
    if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
        num_bbox_reg_classes = 2  # bg and fg

    clss = bbox_target_data[:, 0]
    bbox_targets = blob_utils.zeros((clss.size, 4 * num_bbox_reg_classes))
    bbox_inside_weights = blob_utils.zeros(bbox_targets.shape)
    inds = np.where(clss > 0)[0]
    for ind in inds:
        cls = int(clss[ind])
        start = 4 * cls
        end = start + 4
        bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
        bbox_inside_weights[ind, start:end] = (1.0, 1.0, 1.0, 1.0)
    return bbox_targets, bbox_inside_weights 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:29,代碼來源:fast_rcnn.py

示例2: _expand_bbox_targets

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import zeros [as 別名]
def _expand_bbox_targets(bbox_target_data, stage=0):
    """Bounding-box regression targets are stored in a compact form in the
    roidb.

    This function expands those targets into the 4-of-4*K representation used
    by the network (i.e. only one class has non-zero targets). The loss weights
    are similarly expanded.

    Returns:
        bbox_target_data (ndarray): N x 4K blob of regression targets
        bbox_inside_weights (ndarray): N x 4K blob of loss weights
    """
    num_bbox_reg_classes = cfg.MODEL.NUM_CLASSES
    if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
        num_bbox_reg_classes = 2  # bg and fg

    clss = bbox_target_data[:, 0]
    bbox_targets = blob_utils.zeros((clss.size, 4 * num_bbox_reg_classes))
    bbox_inside_weights = blob_utils.zeros(bbox_targets.shape)
    inds = np.where(clss > 0)[0]
    for ind in inds:
        cls = int(clss[ind]) if not cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else 1
        start = 4 * cls
        end = start + 4
        bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
        bbox_inside_weights[ind, start:end] = (1.0, 1.0, 1.0, 1.0)
    return bbox_targets, bbox_inside_weights 
開發者ID:funnyzhou,項目名稱:FPN-Pytorch,代碼行數:29,代碼來源:fast_rcnn.py

示例3: _expand_bbox_targets

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import zeros [as 別名]
def _expand_bbox_targets(bbox_target_data):
    """Bounding-box regression targets are stored in a compact form in the
    roidb.

    This function expands those targets into the 4-of-4*K representation used
    by the network (i.e. only one class has non-zero targets). The loss weights
    are similarly expanded.

    Returns:
        bbox_target_data (ndarray): N x 4K blob of regression targets
        bbox_inside_weights (ndarray): N x 4K blob of loss weights
    """
    tube_dim = bbox_target_data.shape[-1] - 1
    num_bbox_reg_classes = cfg.MODEL.NUM_CLASSES
    if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
        num_bbox_reg_classes = 2  # bg and fg

    clss = bbox_target_data[:, 0]
    bbox_targets = blob_utils.zeros((clss.size, tube_dim * num_bbox_reg_classes))
    bbox_inside_weights = blob_utils.zeros(bbox_targets.shape)
    inds = np.where(clss > 0)[0]
    for ind in inds:
        cls = int(clss[ind])
        start = tube_dim * cls
        end = start + tube_dim
        bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
        bbox_inside_weights[ind, start:end] = 1.0  # (1.0, 1.0, 1.0, 1.0)
    return bbox_targets, bbox_inside_weights 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:30,代碼來源:fast_rcnn.py

示例4: heatmaps_to_keypoints

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import zeros [as 別名]
def heatmaps_to_keypoints(maps, rois):
    """Extract predicted keypoint locations from heatmaps. Output has shape
    (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
    for each keypoint.
    """
    # This function converts a discrete image coordinate in a HEATMAP_SIZE x
    # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
    # consistency with keypoints_to_heatmap_labels by using the conversion from
    # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
    # continuous coordinate.
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]

    widths = rois[:, 2] - rois[:, 0]
    heights = rois[:, 3] - rois[:, 1]
    widths = np.maximum(widths, 1)
    heights = np.maximum(heights, 1)
    widths_ceil = np.ceil(widths)
    heights_ceil = np.ceil(heights)

    # NCHW to NHWC for use with OpenCV
    maps = np.transpose(maps, [0, 2, 3, 1])
    min_size = cfg.KRCNN.INFERENCE_MIN_SIZE
    xy_preds = np.zeros(
        (len(rois), 4, cfg.KRCNN.NUM_KEYPOINTS), dtype=np.float32)
    for i in range(len(rois)):
        if min_size > 0:
            roi_map_width = int(np.maximum(widths_ceil[i], min_size))
            roi_map_height = int(np.maximum(heights_ceil[i], min_size))
        else:
            roi_map_width = widths_ceil[i]
            roi_map_height = heights_ceil[i]
        width_correction = widths[i] / roi_map_width
        height_correction = heights[i] / roi_map_height
        roi_map = cv2.resize(
            maps[i], (roi_map_width, roi_map_height),
            interpolation=cv2.INTER_CUBIC)
        # Bring back to CHW
        roi_map = np.transpose(roi_map, [2, 0, 1])
        roi_map_probs = scores_to_probs(roi_map.copy())
        w = roi_map.shape[2]
        for k in range(cfg.KRCNN.NUM_KEYPOINTS):
            pos = roi_map[k, :, :].argmax()
            x_int = pos % w
            y_int = (pos - x_int) // w
            assert (roi_map_probs[k, y_int, x_int] ==
                    roi_map_probs[k, :, :].max())
            x = (x_int + 0.5) * width_correction
            y = (y_int + 0.5) * height_correction
            xy_preds[i, 0, k] = x + offset_x[i]
            xy_preds[i, 1, k] = y + offset_y[i]
            xy_preds[i, 2, k] = roi_map[k, y_int, x_int]
            xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int]

    return xy_preds 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:57,代碼來源:keypoints.py

示例5: keypoints_to_heatmap_labels

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import zeros [as 別名]
def keypoints_to_heatmap_labels(keypoints, rois):
    """Encode keypoint location in the target heatmap for use in
    SoftmaxWithLoss.
    """
    # Maps keypoints from the half-open interval [x1, x2) on continuous image
    # coordinates to the closed interval [0, HEATMAP_SIZE - 1] on discrete image
    # coordinates. We use the continuous <-> discrete conversion from Heckbert
    # 1990 ("What is the coordinate of a pixel?"): d = floor(c) and c = d + 0.5,
    # where d is a discrete coordinate and c is a continuous coordinate.
    assert keypoints.shape[2] == cfg.KRCNN.NUM_KEYPOINTS

    shape = (len(rois), cfg.KRCNN.NUM_KEYPOINTS)
    heatmaps = blob_utils.zeros(shape)
    weights = blob_utils.zeros(shape)

    offset_x = rois[:, 0]
    offset_y = rois[:, 1]
    scale_x = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 2] - rois[:, 0])
    scale_y = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 3] - rois[:, 1])

    for kp in range(keypoints.shape[2]):
        vis = keypoints[:, 2, kp] > 0
        x = keypoints[:, 0, kp].astype(np.float32)
        y = keypoints[:, 1, kp].astype(np.float32)
        # Since we use floor below, if a keypoint is exactly on the roi's right
        # or bottom boundary, we shift it in by eps (conceptually) to keep it in
        # the ground truth heatmap.
        x_boundary_inds = np.where(x == rois[:, 2])[0]
        y_boundary_inds = np.where(y == rois[:, 3])[0]
        x = (x - offset_x) * scale_x
        x = np.floor(x)
        if len(x_boundary_inds) > 0:
            x[x_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1

        y = (y - offset_y) * scale_y
        y = np.floor(y)
        if len(y_boundary_inds) > 0:
            y[y_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1

        valid_loc = np.logical_and(
            np.logical_and(x >= 0, y >= 0),
            np.logical_and(
                x < cfg.KRCNN.HEATMAP_SIZE, y < cfg.KRCNN.HEATMAP_SIZE))

        valid = np.logical_and(valid_loc, vis)
        valid = valid.astype(np.int32)

        lin_ind = y * cfg.KRCNN.HEATMAP_SIZE + x
        heatmaps[:, kp] = lin_ind * valid
        weights[:, kp] = valid

    return heatmaps, weights 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:54,代碼來源:keypoints.py


注:本文中的utils.blob.zeros方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。