當前位置: 首頁>>代碼示例>>Python>>正文


Python blob.ones方法代碼示例

本文整理匯總了Python中utils.blob.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python blob.ones方法的具體用法?Python blob.ones怎麽用?Python blob.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.blob的用法示例。


在下文中一共展示了blob.ones方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _expand_to_class_specific_mask_targets

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def _expand_to_class_specific_mask_targets(masks, mask_class_labels):
    """Expand masks from shape (#masks, M ** 2) to (#masks, #classes * M ** 2)
    to encode class specific mask targets.
    """
    assert masks.shape[0] == mask_class_labels.shape[0]
    M = cfg.MRCNN.RESOLUTION

    # Target values of -1 are "don't care" / ignore labels
    mask_targets = -blob_utils.ones(
        (masks.shape[0], cfg.MODEL.NUM_CLASSES * M**2), int32=True)

    for i in range(masks.shape[0]):
        cls = int(mask_class_labels[i])
        start = M**2 * cls
        end = start + M**2
        # Ignore background instance
        # (only happens when there is no fg samples in an image)
        if cls > 0:
            mask_targets[i, start:end] = masks[i, :]

    return mask_targets 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:23,代碼來源:mask_rcnn.py

示例2: _expand_to_class_specific_mask_targets

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def _expand_to_class_specific_mask_targets(masks, mask_class_labels):
    """Expand masks from shape (#masks, M ** 2) to (#masks, #classes * M ** 2)
    to encode class specific mask targets.
    """
    assert masks.shape[0] == mask_class_labels.shape[0]
    M = cfg.MRCNN.RESOLUTION

    # Target values of -1 are "don't care" / ignore labels
    mask_targets = -blob_utils.ones(
        (masks.shape[0], cfg.MODEL.NUM_CLASSES * M**2), int32=True
    )

    for i in range(masks.shape[0]):
        cls = int(mask_class_labels[i])
        start = M**2 * cls
        end = start + M**2
        # Ignore background instance
        # (only happens when there is no fg samples in an image)
        if cls > 0:
            mask_targets[i, start:end] = masks[i, :]

    return mask_targets 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:24,代碼來源:mask_rcnn.py

示例3: _visu_char_box

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def _visu_char_box(char_box, char_box_weight, save_path, height, width):
    im=np.ones((height, width, 3))
    im = im.astype('uint8')
    im = Image.fromarray(im)
    img_draw = ImageDraw.Draw(im)
    for i in range(char_box.shape[0]):
        for j in range(char_box.shape[1]):
            if char_box[i,j,0]>0:
                # assert(char_box_weight[i,j,0]==1 and char_box_weight[i,j,1]==1 and char_box_weight[i,j,2]==1 and char_box_weight[i,j,3]==1)
                ymin = int((i - char_box[i,j,0]*height))
                xmax = int((j + char_box[i,j,1]*height))
                ymax = int((i + char_box[i,j,2]*height))
                xmin = int((j - char_box[i,j,3]*height))
                box = [xmin, ymin, xmax, ymax]
                img_draw.rectangle(box, outline=(255, 0, 0))

    im.save(save_path) 
開發者ID:lvpengyuan,項目名稱:masktextspotter.caffe2,代碼行數:19,代碼來源:mask_rcnn.py

示例4: _expand_to_class_specific_mask_targets

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def _expand_to_class_specific_mask_targets(masks, mask_class_labels):
    """Expand masks from shape (#masks, M ** 2) to (#masks, #classes * M ** 2)
    to encode class specific mask targets.
    """
    assert masks.shape[0] == mask_class_labels.shape[0]
    M = cfg.MRCNN.RESOLUTION

    # Target values of -1 are "don't care" / ignore labels
    mask_targets = -blob_utils.ones(
        (masks.shape[0], cfg.MODEL.NUM_CLASSES * M ** 2), int32=True)

    for i in range(masks.shape[0]):
        cls = int(mask_class_labels[i])
        start = M ** 2 * cls
        end = start + M ** 2
        # Ignore background instance
        # (only happens when there is no fg samples in an image)
        if cls > 0:
            mask_targets[i, start:end] = masks[i, :]

    return mask_targets 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:23,代碼來源:mask_rcnn.py

示例5: prepare_det_rois

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def prepare_det_rois(self, rois, cls_scores, bbox_pred, im_info, score_thresh=cfg.TEST.SCORE_THRESH):
        im_info = im_info.data.cpu().numpy()
        # NOTE: 'rois' is numpy array while
        # 'cls_scores' and 'bbox_pred' are pytorch tensors
        scores = cls_scores.data.cpu().numpy().squeeze()
        # Apply bounding-box regression deltas
        box_deltas = bbox_pred.data.cpu().numpy().squeeze()
        
        assert rois.shape[0] == scores.shape[0] == box_deltas.shape[0]
        
        det_rois = np.empty((0, 5), dtype=np.float32)
        det_labels = np.empty((0), dtype=np.float32)
        det_scores = np.empty((0), dtype=np.float32)
        for im_i in range(cfg.TRAIN.IMS_PER_BATCH):
            # get all boxes that belong to this image
            inds = np.where(abs(rois[:, 0] - im_i) < 1e-06)[0]
            # unscale back to raw image space
            im_boxes = rois[inds, 1:5] / im_info[im_i, 2]
            im_scores = scores[inds]
            # In case there is 1 proposal
            im_scores = im_scores.reshape([-1, im_scores.shape[-1]])
            # In case there is 1 proposal
            im_box_deltas = box_deltas[inds]
            im_box_deltas = im_box_deltas.reshape([-1, im_box_deltas[inds].shape[-1]])

            im_scores, im_boxes = self.get_det_boxes(im_boxes, im_scores, im_box_deltas, im_info[im_i][:2] / im_info[im_i][2])
            im_scores, im_boxes, im_labels = self.box_results_with_nms_and_limit(im_scores, im_boxes, score_thresh)
            
            batch_inds = im_i * np.ones(
                (im_boxes.shape[0], 1), dtype=np.float32)
            im_det_rois = np.hstack((batch_inds, im_boxes * im_info[im_i, 2]))
            det_rois = np.append(det_rois, im_det_rois, axis=0)
            det_labels = np.append(det_labels, im_labels, axis=0)
            det_scores = np.append(det_scores, im_scores, axis=0)
        
        return det_rois, det_labels, det_scores 
開發者ID:jz462,項目名稱:Large-Scale-VRD.pytorch,代碼行數:38,代碼來源:model_builder_rel.py

示例6: add_keypoint_rcnn_blobs

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def add_keypoint_rcnn_blobs(blobs, roidb, fg_rois_per_image, fg_inds, im_scale,
                            batch_idx):
    """Add Mask R-CNN keypoint specific blobs to the given blobs dictionary."""
    # Note: gt_inds must match how they're computed in
    # datasets.json_dataset._merge_proposal_boxes_into_roidb
    gt_inds = np.where(roidb['gt_classes'] > 0)[0]
    max_overlaps = roidb['max_overlaps']
    gt_keypoints = roidb['gt_keypoints']

    ind_kp = gt_inds[roidb['box_to_gt_ind_map']]
    within_box = _within_box(gt_keypoints[ind_kp, :, :], roidb['boxes'])
    vis_kp = gt_keypoints[ind_kp, 2, :] > 0
    is_visible = np.sum(np.logical_and(vis_kp, within_box), axis=1) > 0
    kp_fg_inds = np.where(
        np.logical_and(max_overlaps >= cfg.TRAIN.FG_THRESH, is_visible))[0]

    kp_fg_rois_per_this_image = np.minimum(fg_rois_per_image, kp_fg_inds.size)
    if kp_fg_inds.size > kp_fg_rois_per_this_image:
        kp_fg_inds = np.random.choice(
            kp_fg_inds, size=kp_fg_rois_per_this_image, replace=False)

    sampled_fg_rois = roidb['boxes'][kp_fg_inds]
    box_to_gt_ind_map = roidb['box_to_gt_ind_map'][kp_fg_inds]

    num_keypoints = gt_keypoints.shape[2]
    sampled_keypoints = -np.ones(
        (len(sampled_fg_rois), gt_keypoints.shape[1], num_keypoints),
        dtype=gt_keypoints.dtype)
    for ii in range(len(sampled_fg_rois)):
        ind = box_to_gt_ind_map[ii]
        if ind >= 0:
            sampled_keypoints[ii, :, :] = gt_keypoints[gt_inds[ind], :, :]
            assert np.sum(sampled_keypoints[ii, 2, :]) > 0

    heats, weights = keypoint_utils.keypoints_to_heatmap_labels(
        sampled_keypoints, sampled_fg_rois)

    shape = (sampled_fg_rois.shape[0] * cfg.KRCNN.NUM_KEYPOINTS,)
    heats = heats.reshape(shape)
    weights = weights.reshape(shape)

    sampled_fg_rois *= im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones((sampled_fg_rois.shape[0],
                                                      1))
    sampled_fg_rois = np.hstack((repeated_batch_idx, sampled_fg_rois))

    blobs['keypoint_rois'] = sampled_fg_rois
    blobs['keypoint_locations_int32'] = heats.astype(np.int32, copy=False)
    blobs['keypoint_weights'] = weights 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:51,代碼來源:keypoint_rcnn.py

示例7: add_keypoint_rcnn_blobs

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def add_keypoint_rcnn_blobs(
    blobs, roidb, fg_rois_per_image, fg_inds, im_scale, batch_idx
):
    """Add Mask R-CNN keypoint specific blobs to the given blobs dictionary."""
    # Note: gt_inds must match how they're computed in
    # datasets.json_dataset._merge_proposal_boxes_into_roidb
    gt_inds = np.where(roidb['gt_classes'] > 0)[0]
    max_overlaps = roidb['max_overlaps']
    gt_keypoints = roidb['gt_keypoints']

    ind_kp = gt_inds[roidb['box_to_gt_ind_map']]
    within_box = _within_box(gt_keypoints[ind_kp, :, :], roidb['boxes'])
    vis_kp = gt_keypoints[ind_kp, 2, :] > 0
    is_visible = np.sum(np.logical_and(vis_kp, within_box), axis=1) > 0
    kp_fg_inds = np.where(
        np.logical_and(max_overlaps >= cfg.TRAIN.FG_THRESH, is_visible)
    )[0]

    kp_fg_rois_per_this_image = np.minimum(fg_rois_per_image, kp_fg_inds.size)
    if kp_fg_inds.size > kp_fg_rois_per_this_image:
        kp_fg_inds = np.random.choice(
            kp_fg_inds, size=kp_fg_rois_per_this_image, replace=False
        )

    sampled_fg_rois = roidb['boxes'][kp_fg_inds]
    box_to_gt_ind_map = roidb['box_to_gt_ind_map'][kp_fg_inds]

    num_keypoints = gt_keypoints.shape[2]
    sampled_keypoints = -np.ones(
        (len(sampled_fg_rois), gt_keypoints.shape[1], num_keypoints),
        dtype=gt_keypoints.dtype
    )
    for ii in range(len(sampled_fg_rois)):
        ind = box_to_gt_ind_map[ii]
        if ind >= 0:
            sampled_keypoints[ii, :, :] = gt_keypoints[gt_inds[ind], :, :]
            assert np.sum(sampled_keypoints[ii, 2, :]) > 0

    heats, weights = keypoint_utils.keypoints_to_heatmap_labels(
        sampled_keypoints, sampled_fg_rois
    )

    shape = (sampled_fg_rois.shape[0] * cfg.KRCNN.NUM_KEYPOINTS, 1)
    heats = heats.reshape(shape)
    weights = weights.reshape(shape)

    sampled_fg_rois *= im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones(
        (sampled_fg_rois.shape[0], 1)
    )
    sampled_fg_rois = np.hstack((repeated_batch_idx, sampled_fg_rois))

    blobs['keypoint_rois'] = sampled_fg_rois
    blobs['keypoint_locations_int32'] = heats.astype(np.int32, copy=False)
    blobs['keypoint_weights'] = weights 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:57,代碼來源:keypoint_rcnn.py

示例8: _sample_pairs

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def _sample_pairs(roidb, im_scale, batch_idx):
    """Generate a random sample of RoIs comprising foreground and background
    examples.
    """
    fg_pairs_per_image = cfg.TRAIN.FG_REL_SIZE_PER_IM
    pairs_per_image = int(cfg.TRAIN.FG_REL_SIZE_PER_IM / cfg.TRAIN.FG_REL_FRACTION)  # need much more pairs since it's quadratic
    max_pair_overlaps = roidb['max_pair_overlaps']

    gt_pair_inds = np.where(max_pair_overlaps > 1.0 - 1e-4)[0]
    fg_pair_inds = np.where((max_pair_overlaps >= cfg.TRAIN.FG_THRESH) &
                            (max_pair_overlaps <= 1.0 - 1e-4))[0]
    
    fg_pairs_per_this_image = np.minimum(fg_pairs_per_image, gt_pair_inds.size + fg_pair_inds.size)
    # Sample foreground regions without replacement
    if fg_pair_inds.size > 0:
        fg_pair_inds = npr.choice(
            fg_pair_inds, size=(fg_pairs_per_this_image - gt_pair_inds.size), replace=False)
    fg_pair_inds = np.append(fg_pair_inds, gt_pair_inds)

    # Label is the class each RoI has max overlap with
    fg_prd_labels = roidb['max_prd_classes'][fg_pair_inds]
    blob_dict = dict(
        fg_prd_labels_int32=fg_prd_labels.astype(np.int32, copy=False))
    
    bg_pair_inds = np.where((max_pair_overlaps < cfg.TRAIN.BG_THRESH_HI))[0]
        
    # Compute number of background RoIs to take from this image (guarding
    # against there being fewer than desired)
    bg_pairs_per_this_image = pairs_per_image - fg_pairs_per_this_image
    bg_pairs_per_this_image = np.minimum(bg_pairs_per_this_image, bg_pair_inds.size)
    # Sample foreground regions without replacement
    if bg_pair_inds.size > 0:
        bg_pair_inds = npr.choice(
            bg_pair_inds, size=bg_pairs_per_this_image, replace=False)
    keep_pair_inds = np.append(fg_pair_inds, bg_pair_inds)
    all_prd_labels = np.zeros(keep_pair_inds.size, dtype=np.int32)
    all_prd_labels[:fg_pair_inds.size] = fg_prd_labels + 1  # class should start from 1

    blob_dict['all_prd_labels_int32'] = all_prd_labels.astype(np.int32, copy=False)
    blob_dict['fg_size'] = np.array([fg_pair_inds.size], dtype=np.int32)  # this is used to check if there is at least one fg to learn

    sampled_sbj_boxes = roidb['sbj_boxes'][keep_pair_inds]
    sampled_obj_boxes = roidb['obj_boxes'][keep_pair_inds]
    # Scale rois and format as (batch_idx, x1, y1, x2, y2)
    sampled_sbj_rois = sampled_sbj_boxes * im_scale
    sampled_obj_rois = sampled_obj_boxes * im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones((keep_pair_inds.shape[0], 1))
    sampled_sbj_rois = np.hstack((repeated_batch_idx, sampled_sbj_rois))
    sampled_obj_rois = np.hstack((repeated_batch_idx, sampled_obj_rois))
    blob_dict['sbj_rois'] = sampled_sbj_rois
    blob_dict['obj_rois'] = sampled_obj_rois
    sampled_rel_rois = box_utils.rois_union(sampled_sbj_rois, sampled_obj_rois)
    blob_dict['rel_rois'] = sampled_rel_rois
    if cfg.MODEL.USE_FREQ_BIAS or cfg.MODEL.USE_SEPARATE_SO_SCORES:
        sbj_labels = roidb['max_sbj_classes'][keep_pair_inds]
        obj_labels = roidb['max_obj_classes'][keep_pair_inds]
        blob_dict['all_sbj_labels_int32'] = sbj_labels.astype(np.int32, copy=False)
        blob_dict['all_obj_labels_int32'] = obj_labels.astype(np.int32, copy=False)

    return blob_dict 
開發者ID:jz462,項目名稱:Large-Scale-VRD.pytorch,代碼行數:62,代碼來源:fast_rcnn_rel.py

示例9: box_results_with_nms_and_limit

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def box_results_with_nms_and_limit(self, scores, boxes, score_thresh=cfg.TEST.SCORE_THRESH):
        num_classes = cfg.MODEL.NUM_CLASSES
        cls_boxes = [[] for _ in range(num_classes)]
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        for j in range(1, num_classes):
            inds = np.where(scores[:, j] > score_thresh)[0]
            scores_j = scores[inds, j]
            boxes_j = boxes[inds, j * 4:(j + 1) * 4]
            dets_j = np.hstack((boxes_j, scores_j[:, np.newaxis])).astype(np.float32, copy=False)
            if cfg.TEST.SOFT_NMS.ENABLED:
                nms_dets, _ = box_utils.soft_nms(
                    dets_j,
                    sigma=cfg.TEST.SOFT_NMS.SIGMA,
                    overlap_thresh=cfg.TEST.NMS,
                    score_thresh=0.0001,
                    method=cfg.TEST.SOFT_NMS.METHOD
                )
            else:
                keep = box_utils.nms(dets_j, cfg.TEST.NMS)
                nms_dets = dets_j[keep, :]
            # add labels
            label_j = np.ones((nms_dets.shape[0], 1), dtype=np.float32) * j
            nms_dets = np.hstack((nms_dets, label_j))
            # Refine the post-NMS boxes using bounding-box voting
            if cfg.TEST.BBOX_VOTE.ENABLED:
                nms_dets = box_utils.box_voting(
                    nms_dets,
                    dets_j,
                    cfg.TEST.BBOX_VOTE.VOTE_TH,
                    scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD
                )
            cls_boxes[j] = nms_dets

        # Limit to max_per_image detections **over all classes**
        if cfg.TEST.DETECTIONS_PER_IM > 0:
            image_scores = np.hstack(
                [cls_boxes[j][:, -2] for j in range(1, num_classes)]
            )
            if len(image_scores) > cfg.TEST.DETECTIONS_PER_IM:
                image_thresh = np.sort(image_scores)[-cfg.TEST.DETECTIONS_PER_IM]
                for j in range(1, num_classes):
                    keep = np.where(cls_boxes[j][:, -2] >= image_thresh)[0]
                    cls_boxes[j] = cls_boxes[j][keep, :]

        im_results = np.vstack([cls_boxes[j] for j in range(1, num_classes)])
        boxes = im_results[:, :-2]
        scores = im_results[:, -2]
        labels = im_results[:, -1]

        return scores, boxes, labels 
開發者ID:jz462,項目名稱:Large-Scale-VRD.pytorch,代碼行數:53,代碼來源:model_builder_rel.py

示例10: add_keypoint_rcnn_blobs

# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import ones [as 別名]
def add_keypoint_rcnn_blobs(
        blobs, roidb, fg_rois_per_image, fg_inds, im_scale, batch_idx):
    # Note: gt_inds must match how they're computed in
    # datasets.json_dataset._merge_proposal_boxes_into_roidb
    gt_inds = np.where(roidb['gt_classes'] > 0)[0]
    max_overlaps = roidb['max_overlaps']
    gt_keypoints = roidb['gt_keypoints']

    ind_kp = gt_inds[roidb['box_to_gt_ind_map']]
    within_box = _within_box(gt_keypoints[ind_kp, :, :], roidb['boxes'])
    vis_kp = gt_keypoints[ind_kp, 2, :] > 0
    is_visible = np.sum(np.logical_and(vis_kp, within_box), axis=1) > 0
    kp_fg_inds = np.where(
        np.logical_and(max_overlaps >= cfg.TRAIN.FG_THRESH, is_visible))[0]

    kp_fg_rois_per_this_image = np.minimum(
        fg_rois_per_image, kp_fg_inds.size)
    if kp_fg_inds.size > kp_fg_rois_per_this_image:
        kp_fg_inds = np.random.choice(
            kp_fg_inds, size=kp_fg_rois_per_this_image, replace=False)

    if kp_fg_inds.shape[0] == 0:
        kp_fg_inds = gt_inds
    sampled_fg_rois = roidb['boxes'][kp_fg_inds]
    box_to_gt_ind_map = roidb['box_to_gt_ind_map'][kp_fg_inds]

    num_keypoints = gt_keypoints.shape[-1]
    sampled_keypoints = -np.ones(
        (len(sampled_fg_rois), gt_keypoints.shape[1], num_keypoints),
        dtype=gt_keypoints.dtype)
    for ii in range(len(sampled_fg_rois)):
        ind = box_to_gt_ind_map[ii]
        if ind >= 0:
            sampled_keypoints[ii, :, :] = gt_keypoints[gt_inds[ind], :, :]
            # assert np.sum(sampled_keypoints[ii, 2, :]) > 0

    all_heats = []
    all_weights = []
    time_dim = sampled_fg_rois.shape[-1] // 4
    per_frame_nkps = num_keypoints // time_dim
    for t in range(time_dim):
        heats, weights = keypoint_utils.keypoints_to_heatmap_labels(
            sampled_keypoints[..., t * per_frame_nkps: (t + 1) * per_frame_nkps],
            sampled_fg_rois[..., t * 4: (t + 1) * 4])
        all_heats.append(heats)
        all_weights.append(weights)
    heats = np.concatenate(all_heats, axis=-1)
    weights = np.concatenate(all_weights, axis=-1)

    shape = (sampled_fg_rois.shape[0] * cfg.KRCNN.NUM_KEYPOINTS * time_dim, 1)
    heats = heats.reshape(shape)
    weights = weights.reshape(shape)

    sampled_fg_rois *= im_scale
    repeated_batch_idx = batch_idx * blob_utils.ones(
        (sampled_fg_rois.shape[0], 1))
    sampled_fg_rois = np.hstack((repeated_batch_idx, sampled_fg_rois))

    blobs['keypoint_rois'] = sampled_fg_rois
    blobs['keypoint_locations_int32'] = heats.astype(np.int32, copy=False)
    blobs['keypoint_weights'] = weights 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:63,代碼來源:keypoint_rcnn.py


注:本文中的utils.blob.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。