本文整理匯總了Python中utils.blob.deserialize方法的典型用法代碼示例。如果您正苦於以下問題:Python blob.deserialize方法的具體用法?Python blob.deserialize怎麽用?Python blob.deserialize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils.blob
的用法示例。
在下文中一共展示了blob.deserialize方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import deserialize [as 別名]
def forward(self, inputs, outputs):
"""See modeling.detector.GenerateProposalLabels for inputs/outputs
documentation.
"""
# During training we reuse the data loader code. We populate roidb
# entries on the fly using the rois generated by RPN.
# im_info: [[im_height, im_width, im_scale], ...]
rois = inputs[0].data
roidb = blob_utils.deserialize(inputs[1].data)
im_info = inputs[2].data
im_scales = im_info[:, 2]
output_blob_names = roi_data.fast_rcnn.get_fast_rcnn_blob_names()
# For historical consistency with the original Faster R-CNN
# implementation we are *not* filtering crowd proposals.
# This choice should be investigated in the future (it likely does
# not matter).
json_dataset.add_proposals(roidb, rois, im_scales, crowd_thresh=0)
blobs = {k: [] for k in output_blob_names}
roi_data.fast_rcnn.add_fast_rcnn_blobs(blobs, im_scales, roidb)
for i, k in enumerate(output_blob_names):
blob_utils.py_op_copy_blob(blobs[k], outputs[i])
示例2: forward
# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import deserialize [as 別名]
def forward(self, inputs, outputs):
# inputs is
# [rpn_rois_fpn2, ..., rpn_rois_fpn6,
# rpn_roi_probs_fpn2, ..., rpn_roi_probs_fpn6]
# If training with Faster R-CNN, then inputs will additionally include
# + [roidb, im_info]
rois = collect(inputs, self._train)
if self._train:
# During training we reuse the data loader code. We populate roidb
# entries on the fly using the rois generated by RPN.
# im_info: [[im_height, im_width, im_scale], ...]
im_info = inputs[-1].data
im_scales = im_info[:, 2]
roidb = blob_utils.deserialize(inputs[-2].data)
output_blob_names = roi_data.fast_rcnn.get_fast_rcnn_blob_names()
json_dataset.add_proposals(roidb, rois, im_scales)
blobs = {k: [] for k in output_blob_names}
roi_data.fast_rcnn.add_fast_rcnn_blobs(blobs, im_scales, roidb)
for i, k in enumerate(output_blob_names):
blob_utils.py_op_copy_blob(blobs[k], outputs[i])
else:
# For inference we have a special code path that avoids some data
# loader overhead
distribute(rois, None, outputs, self._train)
示例3: forward
# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import deserialize [as 別名]
def forward(self, inputs, outputs):
"""See modeling.detector.CollectAndDistributeFpnRpnProposals for
inputs/outputs documentation.
"""
# inputs is
# [rpn_rois_fpn2, ..., rpn_rois_fpn6,
# rpn_roi_probs_fpn2, ..., rpn_roi_probs_fpn6]
# If training with Faster R-CNN, then inputs will additionally include
# + [roidb, im_info]
rois = collect(inputs, self._train)
if self._train:
# During training we reuse the data loader code. We populate roidb
# entries on the fly using the rois generated by RPN.
# im_info: [[im_height, im_width, im_scale], ...]
im_info = inputs[-1].data
im_scales = im_info[:, 2]
roidb = blob_utils.deserialize(inputs[-2].data)
# For historical consistency with the original Faster R-CNN
# implementation we are *not* filtering crowd proposals.
# This choice should be investigated in the future (it likely does
# not matter).
json_dataset.add_proposals(roidb, rois, im_scales, crowd_thresh=0)
# Compute training labels for the RPN proposals; also handles
# distributing the proposals over FPN levels
output_blob_names = roi_data.fast_rcnn.get_fast_rcnn_blob_names()
blobs = {k: [] for k in output_blob_names}
roi_data.fast_rcnn.add_fast_rcnn_blobs(blobs, im_scales, roidb)
for i, k in enumerate(output_blob_names):
blob_utils.py_op_copy_blob(blobs[k], outputs[i])
else:
# For inference we have a special code path that avoids some data
# loader overhead
distribute(rois, None, outputs, self._train)
示例4: forward
# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import deserialize [as 別名]
def forward(self, inputs, outputs):
"""See modeling.detector.CollectAndDistributeFpnRpnProposalsRec for
inputs/outputs documentation.
"""
# inputs is
# [rpn_rois_fpn2, ..., rpn_rois_fpn6,
# rpn_roi_probs_fpn2, ..., rpn_roi_probs_fpn6]
# If training with Faster R-CNN, then inputs will additionally include
# + [roidb, im_info]
rois = collect(inputs, self._train)
if self._train:
# During training we reuse the data loader code. We populate roidb
# entries on the fly using the rois generated by RPN.
# im_info: [[im_height, im_width, im_scale], ...]
im_info = inputs[-1].data
im_scales = im_info[:, 2]
roidb = blob_utils.deserialize(inputs[-2].data)
# For historical consistency with the original Faster R-CNN
# implementation we are *not* filtering crowd proposals.
# This choice should be investigated in the future (it likely does
# not matter).
json_dataset.add_proposals(roidb, rois, im_scales, crowd_thresh=0)
# Compute training labels for the RPN proposals; also handles
# distributing the proposals over FPN levels
output_blob_names = roi_data.fast_rcnn.get_fast_rcnn_blob_names()
blobs = {k: [] for k in output_blob_names}
roi_data.fast_rcnn.add_fast_rcnn_blobs_rec(blobs, im_scales, roidb)
for i, k in enumerate(output_blob_names):
blob_utils.py_op_copy_blob(blobs[k], outputs[i])
else:
# For inference we have a special code path that avoids some data
# loader overhead
distribute(rois, None, outputs, self._train)
開發者ID:lvpengyuan,項目名稱:masktextspotter.caffe2,代碼行數:35,代碼來源:collect_and_distribute_fpn_rpn_proposals_rec.py
示例5: save_im_masks
# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import deserialize [as 別名]
def save_im_masks(self, blobs):
import os, uuid
from datasets.dataset_catalog import _DATA_DIR
import utils.blob as blob_utils
channel_swap = (0, 2, 3, 1)
data = blobs['data'].copy()
im = data.transpose(channel_swap)[0]
im = self.rescale_0_1(im)
roidb_temp = blob_utils.deserialize(blobs['roidb'])[0]
im_name = str(self._counter) + '_' + os.path.splitext(os.path.basename(roidb_temp['image']))[0]
with self._lock:
self._counter += 1
out_dir = os.path.join(_DATA_DIR, 'vis', roidb_temp['nuclei_class'])
im_name += '_' + str(uuid.uuid4().get_hex().upper()[0:6])
try:
os.makedirs(out_dir)
except:
pass
aug_rles = roidb_temp['segms']
boxes = roidb_temp['boxes']
boxes = np.append(boxes, np.ones((len(boxes), 2)), 1)
im_scale = blobs['im_info'][0, 2]
from utils.vis import vis_one_image
vis_one_image(im, im_name, out_dir, boxes, segms=aug_rles, keypoints=None, thresh=0.7,
box_alpha=0.8, show_class=False, scale=im_scale)
示例6: forward
# 需要導入模塊: from utils import blob [as 別名]
# 或者: from utils.blob import deserialize [as 別名]
def forward(self, inputs, outputs):
# During training we reuse the data loader code. We populate roidb
# entries on the fly using the rois generated by RPN.
# im_info: [[im_height, im_width, im_scale], ...]
rois = inputs[0].data
roidb = blob_utils.deserialize(inputs[1].data)
im_info = inputs[2].data
im_scales = im_info[:, 2]
output_blob_names = roi_data.fast_rcnn.get_fast_rcnn_blob_names()
json_dataset.add_proposals(roidb, rois, im_scales)
blobs = {k: [] for k in output_blob_names}
roi_data.fast_rcnn.add_fast_rcnn_blobs(blobs, im_scales, roidb)
for i, k in enumerate(output_blob_names):
blob_utils.py_op_copy_blob(blobs[k], outputs[i])