當前位置: 首頁>>代碼示例>>Python>>正文


Python utility.timer方法代碼示例

本文整理匯總了Python中utility.timer方法的典型用法代碼示例。如果您正苦於以下問題:Python utility.timer方法的具體用法?Python utility.timer怎麽用?Python utility.timer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utility的用法示例。


在下文中一共展示了utility.timer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def __init__(self, opt, model, dataset):
        self.opt = opt
        self.model = model
        self.dataset = dataset
        self.device = torch.device("cuda" if opt.use_cuda else "cpu")
        self.timer = util.timer()
        self.epoch = 0

        #build optimizer
        self.optimizer_dict = {}
        for scale, _ in model.scale_dict.items():
            self.optimizer_dict[scale] = optim.Adam(model.networks[model.scale_dict[scale]].parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
        self.loss_func = self._get_loss_func(opt.loss_type)

        #load a model on a target device
        self.model = self.model.to(self.device) 
開發者ID:kaist-ina,項目名稱:NAS_public,代碼行數:18,代碼來源:trainer.py

示例2: train_one_epoch

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def train_one_epoch(self):
        self.timer.tic()

        #decay learning rate
        self._adjust_learning_rate(self.epoch)

        #iterate over low-resolutions
        self.model.train()
        self.dataset.setDatasetType('train')
        train_dataloader = DataLoader(dataset=self.dataset, num_workers=self.opt.num_thread, batch_size=self.opt.num_batch, pin_memory=True, shuffle=True)

        for lr in self.opt.dash_lr:
            self.dataset.setTargetLR(lr)
            scale = self.dataset.getTargetScale()
            self.model.setTargetScale(scale)

            #iterate over training image patches
            for iteration, batch in enumerate(train_dataloader, 1):
                input, target = batch[0], batch[1]
                input, target =  input.to(self.device), target.to(self.device)
                
                self.optimizer_dict[scale].zero_grad()
                loss = self.loss_func(self.model(input), target)
                
                loss.backward()
                self.optimizer_dict[scale].step()

                if iteration % 10 == 0:
                    util.print_progress(iteration, len(self.dataset)/self.opt.num_batch, 'Train Progress ({}p):'.format(lr), 'Complete', 1, 50)

        self.epoch += 1
        print('Epoch[{}-train](complete): {}sec'.format(self.epoch, self.timer.toc())) 
開發者ID:kaist-ina,項目名稱:NAS_public,代碼行數:34,代碼來源:trainer.py

示例3: test

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def test(self):
        torch.set_grad_enabled(False)

        self.ckp.write_log('\nEvaluation on video:')
        self.model.eval()

        timer_test = utility.timer()
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.args.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
            vidwri = cv2.VideoWriter(
                self.ckp.get_path('{}_x{}.avi'.format(self.filename, scale)),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                )
            )

            tqdm_test = tqdm(range(total_frames), ncols=80)
            for _ in tqdm_test:
                success, lr = vidcap.read()
                if not success: break

                lr, = common.set_channel(lr, n_channels=self.args.n_colors)
                lr, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
                lr, = self.prepare(lr.unsqueeze(0))
                sr = self.model(lr, idx_scale)
                sr = utility.quantize(sr, self.args.rgb_range).squeeze(0)

                normalized = sr * 255 / self.args.rgb_range
                ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
                vidwri.write(ndarr)

            vidcap.release()
            vidwri.release()

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        torch.set_grad_enabled(True) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:44,代碼來源:videotester.py

示例4: train

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:45,代碼來源:trainer.py

示例5: test

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def test(self):
        torch.set_grad_enabled(False)

        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(
            torch.zeros(1, len(self.loader_test), len(self.scale))
        )
        self.model.eval()

        timer_test = utility.timer()
        if self.args.save_results: self.ckp.begin_background()
        for idx_data, d in enumerate(self.loader_test):
            for idx_scale, scale in enumerate(self.scale):
                d.dataset.set_scale(idx_scale)
                for lr, hr, filename, _ in tqdm(d, ncols=80):
                    lr, hr = self.prepare(lr, hr)
                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    self.ckp.log[-1, idx_data, idx_scale] += utility.calc_psnr(
                        sr, hr, scale, self.args.rgb_range, dataset=d
                    )
                    if self.args.save_gt:
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(d, filename[0], save_list, scale)

                self.ckp.log[-1, idx_data, idx_scale] /= len(d)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        d.dataset.name,
                        scale,
                        self.ckp.log[-1, idx_data, idx_scale],
                        best[0][idx_data, idx_scale],
                        best[1][idx_data, idx_scale] + 1
                    )
                )

        self.ckp.write_log('Forward: {:.2f}s\n'.format(timer_test.toc()))
        self.ckp.write_log('Saving...')

        if self.args.save_results: self.ckp.end_background()
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0, 0] + 1 == epoch))

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )

        torch.set_grad_enabled(True) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:56,代碼來源:trainer.py

示例6: train

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def train(self):
        self.loss.step()
        epoch = self.optimizer.get_last_epoch() + 1
        lr = self.optimizer.get_lr()

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        # TEMP
        self.loader_train.dataset.set_scale(0)
        for batch, (lr, hr, _,) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, 0)
            loss = self.loss(sr, hr)
            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1]
        self.optimizer.schedule() 
開發者ID:thstkdgus35,項目名稱:EDSR-PyTorch,代碼行數:47,代碼來源:trainer.py

示例7: test

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def test(self):
        torch.set_grad_enabled(False)

        epoch = self.optimizer.get_last_epoch()
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(
            torch.zeros(1, len(self.loader_test), len(self.scale))
        )
        self.model.eval()

        timer_test = utility.timer()
        if self.args.save_results: self.ckp.begin_background()
        for idx_data, d in enumerate(self.loader_test):
            for idx_scale, scale in enumerate(self.scale):
                d.dataset.set_scale(idx_scale)
                for lr, hr, filename in tqdm(d, ncols=80):
                    lr, hr = self.prepare(lr, hr)
                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    self.ckp.log[-1, idx_data, idx_scale] += utility.calc_psnr(
                        sr, hr, scale, self.args.rgb_range, dataset=d
                    )
                    if self.args.save_gt:
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(d, filename[0], save_list, scale)

                self.ckp.log[-1, idx_data, idx_scale] /= len(d)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        d.dataset.name,
                        scale,
                        self.ckp.log[-1, idx_data, idx_scale],
                        best[0][idx_data, idx_scale],
                        best[1][idx_data, idx_scale] + 1
                    )
                )

        self.ckp.write_log('Forward: {:.2f}s\n'.format(timer_test.toc()))
        self.ckp.write_log('Saving...')

        if self.args.save_results:
            self.ckp.end_background()

        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0, 0] + 1 == epoch))

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )

        torch.set_grad_enabled(True) 
開發者ID:thstkdgus35,項目名稱:EDSR-PyTorch,代碼行數:58,代碼來源:trainer.py

示例8: train

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()
        # from IPython import embed; embed(); exit()
        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, nl, mk, hr, _, idx_scale) in enumerate(self.loader_train):
            # from IPython import embed; embed(); exit()
            lr, nl, mk, hr = self.prepare([lr, nl, mk, hr])
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(idx_scale, lr, nl, mk)
            # from IPython import embed; embed(); exit()
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.3f}+{:.3f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()
            # from IPython import embed; embed(); exit()
        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
開發者ID:ofsoundof,項目名稱:3D_Appearance_SR,代碼行數:47,代碼來源:trainer_finetune.py

示例9: test

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, nl, mk, hr, filename, _) in enumerate(tqdm_test):
                    # print('FLAG')
                    # print(filename)
                    filename = filename[0]
                    print(filename)
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, nl, mk, hr = self.prepare([lr, nl, mk, hr])
                    else:
                        lr, nl, mk, = self.prepare([lr, nl, mk])

                    sr = self.model(idx_scale, lr, nl, mk)
                    sr = utility.quantize(sr, self.args.rgb_range)
                    # print(sr.shape)
                    b, c, h, w = sr.shape
                    hr = hr[:, :, :h, :w]
                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
開發者ID:ofsoundof,項目名稱:3D_Appearance_SR,代碼行數:58,代碼來源:trainer_finetune.py

示例10: train

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()
        # from IPython import embed; embed(); exit()
        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare([lr, hr])
            timer_data.hold()
            timer_model.tic()
            # from IPython import embed; embed(); exit()

            self.optimizer.zero_grad()
            sr = self.model(idx_scale, lr)
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.3f}+{:.3f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
開發者ID:ofsoundof,項目名稱:3D_Appearance_SR,代碼行數:46,代碼來源:trainer.py

示例11: test

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):

                    # from IPython import embed; embed();
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare([lr, hr])
                    else:
                        lr = self.prepare([lr])[0]

                    sr = self.model(idx_scale, lr)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
開發者ID:ofsoundof,項目名稱:3D_Appearance_SR,代碼行數:55,代碼來源:trainer.py

示例12: _analyze_baseline

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def _analyze_baseline(self):
        timer = util.timer()
        dataloader = DataLoader(dataset=self.dataset, num_workers=self.opt.num_thread, batch_size=1, shuffle=False, pin_memory=True)
        result = {}

        #iterate over low resolutions
        for lr in opt.dash_lr:
            #setup (process & thread)
            process_list = []
            output_queue = mp.Queue()
            input_queue = mp.Queue(1)
            for _ in range(PROCESS_NUM):
                process = mp.Process(target=measure_quality, args=(input_queue, output_queue))
                process.start()
                process_list.append(process)

            #setup (variable)
            result[lr] = Result()
            result[lr].frameidx = []
            result[lr].ssim = []
            result[lr].psnr = []

            print('start anaylze {}p/baseline quality'.format(lr))
            self.dataset.setTargetLR(lr)
            self.model.setTargetScale(self.dataset.getTargetScale())

            #iterate over test dataset
            for iteration, batch in enumerate(dataloader, 1):
                assert len(batch[0]) == 1
                _, upscaled, target = batch[0], batch[1], batch[2]
                upscaled_np, target_np = torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
                upscaled_np= upscaled.data[0].permute(1,2,0).numpy()
                input_queue.put((iteration, upscaled_np, target_np))

                elapsed_time = timer.toc()
                util.print_progress(iteration, len(self.dataset), 'Test Progress ({}p - {}sec):'.format(lr, round(elapsed_time, 2)), 'Complete', 1, 50)


            #terminate
            for _ in range(len(process_list)):
                input_queue.put(('end', ))

            #merge results
            quality_list = []
            for process in process_list:
                quality_list.extend(output_queue.get())

            for quality in quality_list:
                result[lr].frameidx.append(quality.idx)
                result[lr].ssim.append(quality.ssim)
                result[lr].psnr.append(quality.psnr)

            result[lr].frameidx, result[lr].ssim, result[lr].psnr = \
                [list(x) for x in zip(*sorted(zip(result[lr].frameidx, result[lr].ssim, result[lr].psnr), key=lambda pair: pair[0]))]

        #PSNR, SSIM for original images
        result[self.opt.dash_hr] = Result()
        result[self.opt.dash_hr].psnr = 100
        result[self.opt.dash_hr].ssim = 1

        return result 
開發者ID:kaist-ina,項目名稱:NAS_public,代碼行數:63,代碼來源:tester.py

示例13: _generate_sr

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def _generate_sr(self, output_node=None):
        with torch.no_grad():
            timer = util.timer()
            if output_node == None :
                output_node = self.output_nodes[-1]

            dataloader = DataLoader(dataset=self.dataset, num_workers=6, batch_size=1, shuffle=False, pin_memory=True)
            target_res = self.node2res[output_node]
            
            process_list = []
            input_queue = mp.Queue()
            for _ in range(PROCESS_NUM):
                process = mp.Process(target=save_img, args=(input_queue, ))
                process.start()
                process_list.append(process)

            #iterate over target resolutions
            for lr in target_res:

                self.dataset.setTargetLR(lr)
                self.model.setTargetScale(self.dataset.getTargetScale())
                for iteration, batch in enumerate(dataloader, 1):
                    assert len(batch[0]) == 1

                    #prepare
                    input, upscaled, target = batch[0], batch[1], batch[2]
                    input_np, pscaled_np, target_np = torch.squeeze(input, 0).permute(1, 2, 0).numpy(), torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
                    input, upscaled, target =  input.to(self.device), upscaled.to(self.device), target.to(self.device)
                    output = self.model(input, output_node)
                    torch.cuda.synchronize()

                    output = torch.squeeze(torch.clamp(output, min=0, max=1.), 0).permute(1, 2, 0)
                    output_np = output.to('cpu').numpy()
                    '''
                    misc.imsave('{}/{}_{}_output.png'.format(self.opt.result_dir, lr, iteration), output_np)
                    misc.imsave('{}/{}_{}_baseline.png'.format(self.opt.result_dir, lr, iteration), upscaled_np)
                    misc.imsave('{}/{}_{}_target.png'.format(self.opt.result_dir, lr, iteration), target_np)
                    '''
                    input_queue.put((lr, iteration, input_np, output_np, target_np))
                    elapsed_time = timer.toc()
                    util.print_progress(iteration, len(self.dataset), 'Test Progress ({}p - {}sec):'.format(lr, round(elapsed_time, 2)), 'Complete', 1, 50)

            #terminate
            for _ in range(len(process_list)):
                input_queue.put(('end', ))

    #get psnr, ssim of super-resolution 
開發者ID:kaist-ina,項目名稱:NAS_public,代碼行數:49,代碼來源:tester.py

示例14: train

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.6e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)

            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
開發者ID:ChaofWang,項目名稱:AWSRN,代碼行數:46,代碼來源:trainer.py

示例15: test

# 需要導入模塊: import utility [as 別名]
# 或者: from utility import timer [as 別名]
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_psnr = 0
                # eval_ssim = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare(lr, hr)
                    else:
                        lr, = self.prepare(lr)

                    sr = self.model(lr, idx_scale)

                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    if not no_eval:
                        eval_psnr += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        # eval_ssim += utility.calc_ssim(sr, hr)
                        # save_list.extend([lr, hr])
                        save_list.extend([hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_psnr / len(self.loader_test)
                # mean_ssim = eval_ssim / len(self.loader_test)
                
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best PSNR: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
開發者ID:ChaofWang,項目名稱:AWSRN,代碼行數:59,代碼來源:trainer.py


注:本文中的utility.timer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。