本文整理匯總了Python中util.normalize方法的典型用法代碼示例。如果您正苦於以下問題:Python util.normalize方法的具體用法?Python util.normalize怎麽用?Python util.normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類util
的用法示例。
在下文中一共展示了util.normalize方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_height
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def compute_height(points, neighbors, deltas, get_delta_fn=None):
if get_delta_fn is None:
get_delta_fn = lambda src, dst: deltas[dst]
dim = len(points)
result = [None] * dim
seed_idx = min_index([sum(p) for p in points])
q = [(0.0, seed_idx)]
while len(q) > 0:
(height, idx) = heapq.heappop(q)
if result[idx] is not None: continue
result[idx] = height
for n in neighbors[idx]:
if result[n] is not None: continue
heapq.heappush(q, (get_delta_fn(idx, n) + height, n))
return util.normalize(np.array(result))
# Same as above, but computes height taking into account river downcutting.
# `max_delta` determines the maximum difference in neighboring points (to
# give the effect of talus slippage). `river_downcutting_constant` affects how
# deeply rivers cut into terrain (higher means more downcutting).
示例2: rotate
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def rotate(self, vector, angle):
x, y, z = normalize(vector)
s = sin(angle)
c = cos(angle)
m = 1 - c
matrix = Matrix([
m * x * x + c,
m * x * y - z * s,
m * z * x + y * s,
0,
m * x * y + z * s,
m * y * y + c,
m * y * z - x * s,
0,
m * z * x - y * s,
m * y * z + x * s,
m * z * z + c,
0,
0,
0,
0,
1,
])
return matrix * self
示例3: _triangle_paths
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def _triangle_paths(self, detail, vertices):
paths = []
a, b, c = vertices
r = self.radius
p = self.center
if detail == 0:
v1 = tuple(r * a[i] + p[i] for i in xrange(3))
v2 = tuple(r * b[i] + p[i] for i in xrange(3))
v3 = tuple(r * c[i] + p[i] for i in xrange(3))
paths.append((v1, v2))
paths.append((v2, v3))
paths.append((v3, v1))
else:
ab = util.normalize([(a[i] + b[i]) / 2.0 for i in xrange(3)])
ac = util.normalize([(a[i] + c[i]) / 2.0 for i in xrange(3)])
bc = util.normalize([(b[i] + c[i]) / 2.0 for i in xrange(3)])
paths.extend(self._triangle_paths(detail - 1, (a, ab, ac)))
paths.extend(self._triangle_paths(detail - 1, (b, bc, ab)))
paths.extend(self._triangle_paths(detail - 1, (c, ac, bc)))
paths.extend(self._triangle_paths(detail - 1, (ab, bc, ac)))
return paths
示例4: page_matches_by_title_filtered
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def page_matches_by_title_filtered(self):
my_pages = []
if not self.normalized_title:
return my_pages
for my_page in self.page_new_matches_by_title:
# don't do this right now. not sure if it helps or hurts.
# don't check title match if we already know it belongs to a different doi
# if my_page.doi and my_page.doi != self.doi:
# continue
# double check author match
match_type = "title"
if self.first_author_lastname or self.last_author_lastname:
if my_page.authors:
try:
pmh_author_string = normalize(u", ".join(my_page.authors))
if self.first_author_lastname and normalize(self.first_author_lastname) in pmh_author_string:
match_type = "title and first author"
elif self.last_author_lastname and normalize(self.last_author_lastname) in pmh_author_string:
match_type = "title and last author"
else:
# logger.info(
# u"author check fails, so skipping this record. Looked for {} and {} in {}".format(
# self.first_author_lastname, self.last_author_lastname, pmh_author_string))
# logger.info(self.authors)
# don't match if bad author match
continue
except TypeError:
pass # couldn't make author string
my_page.match_evidence = u"oa repository (via OAI-PMH {} match)".format(match_type)
my_pages.append(my_page)
return my_pages
示例5: is_same_publisher
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def is_same_publisher(self, publisher):
if self.publisher:
return normalize(self.publisher) == normalize(publisher)
return False
示例6: main
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def main(argv):
shape = (512,) * 2
values = np.zeros(shape)
for p in range(1, 10):
a = 2 ** p
values += np.abs(noise_octave(shape, a) - 0.5)/ a
result = (1.0 - util.normalize(values)) ** 2
np.save('ridge', result)
示例7: clean_sample
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def clean_sample(sample):
# Get rid of "out-of-bounds" magic values.
sample[sample == np.finfo('float32').min] = 0.0
# Ignore any samples with NaNs, for one reason or another.
if np.isnan(sample).any(): return None
# Only accept values that span a given range. This is to capture more
# mountainous samples.
if (sample.max() - sample.min()) < 40: return None
# Filter out samples for which a significant portion is within a small
# threshold from the minimum value. This helps filter out samples that
# contain a lot of water.
near_min_fraction = (sample < (sample.min() + 8)).sum() / sample.size
if near_min_fraction > 0.2: return None
# Low entropy samples likely have some file corruption or some other artifact
# that would make it unsuitable as a training sample.
entropy = skimage.measure.shannon_entropy(sample)
if entropy < 10.0: return None
return util.normalize(sample)
# This function returns rotated and flipped variants of the provided array. This
# increases the number of training samples by a factor of 8.
示例8: look_at
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def look_at(self, eye, center, up):
up = normalize(up)
f = normalize(sub(center, eye))
s = cross(f, up)
u = cross(s, f)
matrix = Matrix([
s[0], s[1], s[2], 0,
u[0], u[1], u[2], 0,
-f[0], -f[1], -f[2], 0,
eye[0], eye[1], eye[2], 1,
]).inverse()
return matrix * self
示例9: visible
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def visible(self, eye, point):
v = util.sub(eye, point)
o = point
d = util.normalize(v)
t = self.intersect(o, d, 0, util.length(v))
return t is None
示例10: normalized_title
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def normalized_title(self):
return normalize(self.display_title)
示例11: main
# 需要導入模塊: import util [as 別名]
# 或者: from util import normalize [as 別名]
def main(argv):
dim = 512
shape = (dim,) * 2
disc_radius = 1.0
max_delta = 0.05
river_downcutting_constant = 1.3
directional_inertia = 0.4
default_water_level = 1.0
evaporation_rate = 0.2
print ('Generating...')
print(' ...initial terrain shape')
land_mask = remove_lakes(
(util.fbm(shape, -2, lower=2.0) + bump(shape, 0.2 * dim) - 1.1) > 0)
coastal_dropoff = np.tanh(util.dist_to_mask(land_mask) / 80.0) * land_mask
mountain_shapes = util.fbm(shape, -2, lower=2.0, upper=np.inf)
initial_height = (
(util.gaussian_blur(np.maximum(mountain_shapes - 0.40, 0.0), sigma=5.0)
+ 0.1) * coastal_dropoff)
deltas = util.normalize(np.abs(util.gaussian_gradient(initial_height)))
print(' ...sampling points')
points = util.poisson_disc_sampling(shape, disc_radius)
coords = np.floor(points).astype(int)
print(' ...delaunay triangulation')
tri = sp.spatial.Delaunay(points)
(indices, indptr) = tri.vertex_neighbor_vertices
neighbors = [indptr[indices[k]:indices[k + 1]] for k in range(len(points))]
points_land = land_mask[coords[:, 0], coords[:, 1]]
points_deltas = deltas[coords[:, 0], coords[:, 1]]
print(' ...initial height map')
points_height = compute_height(points, neighbors, points_deltas)
print(' ...river network')
(upstream, downstream, volume) = compute_river_network(
points, neighbors, points_height, points_land,
directional_inertia, default_water_level, evaporation_rate)
print(' ...final terrain height')
new_height = compute_final_height(
points, neighbors, points_deltas, volume, upstream,
max_delta, river_downcutting_constant)
terrain_height = render_triangulation(shape, tri, new_height)
np.savez('river_network', height=terrain_height, land_mask=land_mask)