當前位置: 首頁>>代碼示例>>Python>>正文


Python log.warn方法代碼示例

本文整理匯總了Python中util.log.warn方法的典型用法代碼示例。如果您正苦於以下問題:Python log.warn方法的具體用法?Python log.warn怎麽用?Python log.warn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在util.log的用法示例。


在下文中一共展示了log.warn方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __init__(self, config, model, dataset):
        self.config = config
        self.model = model
        self.train_dir = config.train_dir
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset

        check_data_id(dataset, config.data_id)
        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         data_id=config.data_id,
                                         is_training=False,
                                         shuffle=False)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        tf.set_random_seed(1234)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint = config.checkpoint
        if self.checkpoint is None and self.train_dir:
            self.checkpoint = tf.train.latest_checkpoint(self.train_dir)
        if self.checkpoint is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint) 
開發者ID:clvrai,項目名稱:SSGAN-Tensorflow,代碼行數:42,代碼來源:evaler.py

示例2: eval_run

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def eval_run(self):
        # load checkpoint
        if self.checkpoint:
            self.saver.restore(self.session, self.checkpoint)
            log.info("Loaded from checkpoint!")

        log.infov("Start 1-epoch Inference and Evaluation")

        log.info("# of examples = %d", len(self.dataset))
        length_dataset = len(self.dataset)

        max_steps = int(length_dataset / self.batch_size) + 1
        log.info("max_steps = %d", max_steps)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(self.session,
                                               coord=coord, start=True)

        evaler = EvalManager()
        try:
            for s in xrange(max_steps):
                step, loss, step_time, batch_chunk, prediction_pred, prediction_gt = \
                    self.run_single_step(self.batch)
                self.log_step_message(s, loss, step_time)
                evaler.add_batch(batch_chunk['id'], prediction_pred, prediction_gt)

        except Exception as e:
            coord.request_stop(e)

        coord.request_stop()
        try:
            coord.join(threads, stop_grace_period_secs=3)
        except RuntimeError as e:
            log.warn(str(e))

        evaler.report()
        log.infov("Evaluation complete.") 
開發者ID:clvrai,項目名稱:SSGAN-Tensorflow,代碼行數:39,代碼來源:evaler.py

示例3: eval_run

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def eval_run(self):
        # load checkpoint
        if self.checkpoint_path:
            self.saver.restore(self.session, self.checkpoint_path)
            log.info("Loaded from checkpoint!")

        log.infov("Start 1-epoch Inference and Evaluation")

        log.info("# of examples = %d", len(self.dataset))
        length_dataset = len(self.dataset)

        max_steps = int(length_dataset / self.batch_size) + 1
        log.info("max_steps = %d", max_steps)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(self.session,
                                               coord=coord, start=True)

        evaler = EvalManager()
        try:
            for s in xrange(max_steps):
                step, loss, step_time, batch_chunk, prediction_pred, prediction_gt = \
                    self.run_single_step(self.batch)
                self.log_step_message(s, loss, step_time)
                evaler.add_batch(batch_chunk['id'], prediction_pred, prediction_gt)

        except Exception as e:
            coord.request_stop(e)

        coord.request_stop()
        try:
            coord.join(threads, stop_grace_period_secs=3)
        except RuntimeError as e:
            log.warn(str(e))

        evaler.report()
        log.infov("Evaluation complete.") 
開發者ID:clvrai,項目名稱:Relation-Network-Tensorflow,代碼行數:39,代碼來源:evaler.py

示例4: eval_run

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def eval_run(self):
        # load checkpoint
        if self.checkpoint_path:
            self.saver.restore(self.session, self.checkpoint_path)
            log.info("Loaded from checkpoint!")

        log.infov("Start 1-epoch Inference and Evaluation")

        log.info("# of examples = %d", len(self.dataset))

        max_steps = self.config.max_steps
        log.info("max_steps = %d", max_steps)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(self.session,
                                               coord=coord, start=True)

        evaler = EvalManager()
        try:
            for s in xrange(max_steps):
                step, step_time, batch_chunk, prediction_pred, prediction_gt = \
                    self.run_single_step(self.batch)
                self.log_step_message(s, step_time)
                evaler.add_batch(batch_chunk['id'], prediction_pred, prediction_gt)

        except Exception as e:
            coord.request_stop(e)

        coord.request_stop()
        try:
            coord.join(threads, stop_grace_period_secs=3)
        except RuntimeError as e:
            log.warn(str(e))

        if self.config.output_file:
            evaler.dump_result(self.config.output_file) 
開發者ID:shaohua0116,項目名稱:DCGAN-Tensorflow,代碼行數:38,代碼來源:evaler.py

示例5: __init__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __init__(self, config, model, dataset):
        self.config = config
        self.model = model
        self.train_dir = config.train_dir
        self.output_file = config.output_file
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset

        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         is_training=False,
                                         shuffle=False)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        tf.set_random_seed(1234)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint = config.checkpoint
        if self.checkpoint is None and self.train_dir:
            self.checkpoint = tf.train.latest_checkpoint(self.train_dir)
        if self.checkpoint is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint) 
開發者ID:shaohua0116,項目名稱:WGAN-GP-TensorFlow,代碼行數:41,代碼來源:evaler.py

示例6: __call__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __call__(self, input):
        if self._deconv_type == 'bilinear':
            from ops import bilinear_deconv2d as deconv2d
        elif self._deconv_type == 'nn':
            from ops import nn_deconv2d as deconv2d
        elif self._deconv_type == 'transpose':
            from ops import deconv2d
        else:
            raise NotImplementedError
        with tf.variable_scope(self.name, reuse=self._reuse):
            if not self._reuse:
                log.warn(self.name)
            _ = fc(input, self.start_dim_x * self.start_dim_y * self.start_dim_ch,
                   self._is_train, info=not self._reuse, norm='none', name='fc')
            _ = tf.reshape(_, [_.shape.as_list()[0], self.start_dim_y,
                               self.start_dim_x, self.start_dim_ch])
            if not self._reuse:
                log.info('reshape {} '.format(_.shape.as_list()))
            num_deconv_layer = int(np.ceil(np.log2(
                max(float(self._h/self.start_dim_y), float(self._w/self.start_dim_x)))))
            for i in range(num_deconv_layer):
                _ = deconv2d(_, max(self._c, int(_.get_shape().as_list()[-1]/2)),
                             self._is_train, info=not self._reuse, norm=self._norm_type,
                             name='deconv{}'.format(i+1))
                if num_deconv_layer - i <= self._num_res_block:
                    _ = conv2d_res(
                            _, self._is_train, info=not self._reuse,
                            name='res_block{}'.format(self._num_res_block - num_deconv_layer + i + 1))
            _ = deconv2d(_, self._c, self._is_train, k=1, s=1, info=not self._reuse,
                         activation_fn=tf.tanh, norm='none',
                         name='deconv{}'.format(i+2))
            _ = tf.image.resize_bilinear(_, [self._h, self._w])

            self._reuse = True
            self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.name)
            return _ 
開發者ID:shaohua0116,項目名稱:WGAN-GP-TensorFlow,代碼行數:38,代碼來源:generator.py

示例7: __init__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __init__(self,
                 config,
                 dataset,
                 dataset_train):
        self.config = config
        self.train_dir = config.train_dir
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset
        self.dataset_train = dataset_train

        check_data_id(dataset, config.data_id)
        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         data_id=config.data_id,
                                         is_training=False,
                                         shuffle=False)

        # --- create model ---
        self.model = Model(config)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        tf.set_random_seed(123)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint_path = config.checkpoint_path
        if self.checkpoint_path is None and self.train_dir:
            self.checkpoint_path = tf.train.latest_checkpoint(self.train_dir)
        if self.checkpoint_path is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint_path) 
開發者ID:clvrai,項目名稱:Generative-Latent-Optimization-Tensorflow,代碼行數:48,代碼來源:evaler.py

示例8: eval_run

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def eval_run(self):
        # load checkpoint
        if self.checkpoint_path:
            self.saver.restore(self.session, self.checkpoint_path)
            log.info("Loaded from checkpoint!")

        log.infov("Start Inference and Evaluation")

        log.info("# of testing examples = %d", len(self.dataset))
        length_dataset = len(self.dataset)

        max_steps = int(length_dataset / self.batch_size) + 1

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(self.session,
                                               coord=coord, start=True)

        evaler = EvalManager()

        if not (self.config.interpolate or self.config.generate or self.config.reconstruct):
            raise ValueError('Please specify at least one task by indicating' +
                             '--reconstruct, --generate, or --interpolate.')
            return

        if self.config.reconstruct:
            try:
                for s in xrange(max_steps):
                    step, loss, step_time, batch_chunk, prediction_pred, prediction_gt = \
                        self.run_single_step(self.batch)
                    self.log_step_message(s, loss, step_time)
                    evaler.add_batch(batch_chunk['id'], prediction_pred, prediction_gt)

            except Exception as e:
                coord.request_stop(e)

            evaler.report()
            log.warning('Completed reconstruction.')

        if self.config.generate:
            x = self.generator(self.batch_size)
            img = self.image_grid(x)
            imageio.imwrite('generate_{}.png'.format(self.config.prefix), img)
            log.warning('Completed generation. Generated samples are save' +
                        'as generate_{}.png'.format(self.config.prefix))

        if self.config.interpolate:
            x = self.interpolator(self.dataset_train, self.batch_size)
            img = self.image_grid(x)
            imageio.imwrite('interpolate_{}.png'.format(self.config.prefix), img)
            log.warning('Completed interpolation. Interpolated samples are save' +
                        'as interpolate_{}.png'.format(self.config.prefix))

        coord.request_stop()
        try:
            coord.join(threads, stop_grace_period_secs=3)
        except RuntimeError as e:
            log.warn(str(e))

        log.infov("Completed evaluation.") 
開發者ID:clvrai,項目名稱:Generative-Latent-Optimization-Tensorflow,代碼行數:61,代碼來源:evaler.py

示例9: __init__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __init__(self,
                 config,
                 dataset):
        self.config = config
        self.train_dir = config.train_dir
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset

        check_data_id(dataset, config.data_id)
        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         data_id=config.data_id,
                                         is_training=False,
                                         shuffle=False)

        # --- create model ---
        self.model = Model(config)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        tf.set_random_seed(1234)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint_path = config.checkpoint_path
        if self.checkpoint_path is None and self.train_dir:
            self.checkpoint_path = tf.train.latest_checkpoint(self.train_dir)
        if self.checkpoint_path is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint_path) 
開發者ID:clvrai,項目名稱:Representation-Learning-by-Learning-to-Count,代碼行數:46,代碼來源:evaler.py

示例10: __init__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __init__(self, config, model, dataset):
        self.config = config
        self.model = model
        self.train_dir = config.train_dir
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset

        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         is_training=False,
                                         shuffle=False)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        # --- vars ---
        all_vars = tf.trainable_variables()
        log.warn("********* var ********** ")
        slim.model_analyzer.analyze_vars(all_vars, print_info=True)

        tf.set_random_seed(123)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint = config.checkpoint
        if self.checkpoint is None and self.train_dir:
            self.checkpoint = tf.train.latest_checkpoint(self.train_dir)
            log.info("Checkpoint path : %s", self.checkpoint)
        elif self.checkpoint is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint) 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:46,代碼來源:evaler.py

示例11: __init__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __init__(self,
                 config,
                 dataset):
        self.config = config
        self.train_dir = config.train_dir
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset

        check_data_id(dataset, config.data_id)
        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         data_id=config.data_id,
                                         is_training=False,
                                         shuffle=False)

        # --- create model ---
        Model = self.get_model_class(config.model)
        log.infov("Using Model class : %s", Model)
        self.model = Model(config)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        tf.set_random_seed(1234)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint_path = config.checkpoint_path
        if self.checkpoint_path is None and self.train_dir:
            self.checkpoint_path = tf.train.latest_checkpoint(self.train_dir)
        if self.checkpoint_path is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint_path) 
開發者ID:clvrai,項目名稱:Relation-Network-Tensorflow,代碼行數:48,代碼來源:evaler.py

示例12: build

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def build(self, is_train=True):

        n = self.a_dim
        conv_info = self.conv_info

        # build loss and accuracy {{{
        def build_loss(logits, labels):
            # Cross-entropy loss
            loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)

            # Classification accuracy
            correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            return tf.reduce_mean(loss), accuracy
        # }}}

        # Classifier: takes images as input and outputs class label [B, m]
        def C(img, q, scope='Classifier'):
            with tf.variable_scope(scope) as scope:
                log.warn(scope.name)
                conv_1 = conv2d(img, conv_info[0], is_train, s_h=3, s_w=3, name='conv_1')
                conv_2 = conv2d(conv_1, conv_info[1], is_train, s_h=3, s_w=3, name='conv_2')
                conv_3 = conv2d(conv_2, conv_info[2], is_train, name='conv_3')
                conv_4 = conv2d(conv_3, conv_info[3], is_train, name='conv_4')
                conv_q = tf.concat([tf.reshape(conv_4, [self.batch_size, -1]), q], axis=1)
                fc_1 = fc(conv_q, 256, name='fc_1')
                fc_2 = fc(fc_1, 256, name='fc_2')
                fc_2 = slim.dropout(fc_2, keep_prob=0.5, is_training=is_train, scope='fc_3/')
                fc_3 = fc(fc_2, n, activation_fn=None, name='fc_3')
                return fc_3

        logits = C(self.img, self.q, scope='Classifier')
        self.all_preds = tf.nn.softmax(logits)
        self.loss, self.accuracy = build_loss(logits, self.a)

        # Add summaries
        def draw_iqa(img, q, target_a, pred_a):
            fig, ax = tfplot.subplots(figsize=(6, 6))
            ax.imshow(img)
            ax.set_title(question2str(q))
            ax.set_xlabel(answer2str(target_a)+answer2str(pred_a, 'Predicted'))
            return fig

        try:
            tfplot.summary.plot_many('IQA/',
                                     draw_iqa, [self.img, self.q, self.a, self.all_preds],
                                     max_outputs=3,
                                     collections=["plot_summaries"])
        except:
            pass

        tf.summary.scalar("loss/accuracy", self.accuracy)
        tf.summary.scalar("loss/cross_entropy", self.loss)
        log.warn('Successfully loaded the model.') 
開發者ID:clvrai,項目名稱:Relation-Network-Tensorflow,代碼行數:56,代碼來源:model_baseline.py

示例13: __init__

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def __init__(self,
                 config,
                 dataset):
        self.config = config
        self.train_dir = config.train_dir
        self.output_file = config.output_file
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset

        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         is_training=False,
                                         shuffle=False)

        # --- create model ---
        self.model = Model(config)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        tf.set_random_seed(1234)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint_path = config.checkpoint_path
        if self.checkpoint_path is None and self.train_dir:
            self.checkpoint_path = tf.train.latest_checkpoint(self.train_dir)
        if self.checkpoint_path is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint_path) 
開發者ID:shaohua0116,項目名稱:DCGAN-Tensorflow,代碼行數:45,代碼來源:evaler.py

示例14: eval_run

# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import warn [as 別名]
def eval_run(self):
        # load checkpoint
        if self.checkpoint:
            self.saver.restore(self.session, self.checkpoint)
            log.info("Loaded from checkpoint!")

        log.infov("Start 1-epoch Inference and Evaluation")
        log.info("# of examples = %d", len(self.dataset))
        log.info("max_steps = %d", self.config.max_evaluation_steps)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(
            self.session, coord=coord, start=True)

        evaler = EvalManager()
        try:
            for s in xrange(self.config.max_evaluation_steps):
                step, step_time, id, d_loss, g_loss, fake_images, \
                    real_images, output = self.run_single_step(self.batch)
                self.log_step_message(s, d_loss, g_loss, step_time)
                evaler.add_batch(id, output)

        except Exception as e:
            coord.request_stop(e)

        coord.request_stop()
        try:
            coord.join(threads, stop_grace_period_secs=3)
        except RuntimeError as e:
            log.warn(str(e))

        if self.config.write_summary_image:
            n = int(np.sqrt(self.batch_size))
            h, w, c = real_images.shape[1:]
            summary_real = np.reshape(np.transpose(
                np.reshape(real_images[:n*n],
                           [n, n*h, w, c]), [1, 0, 2, 3]), [n*h, n*w, c])
            summary_fake = np.reshape(np.transpose(
                np.reshape(fake_images[:n*n],
                           [n, n*h, w, c]), [1, 0, 2, 3]), [n*h, n*w, c])
            summary_image = np.concatenate([summary_real, summary_fake], axis=1)
            log.infov(" Writing a summary image: %s ...",
                      self.config.summary_image_name)
            imwrite(self.config.summary_image_name, summary_image)

        if self.config.output_file:
            evaler.dump_result(self.config.output_file) 
開發者ID:shaohua0116,項目名稱:WGAN-GP-TensorFlow,代碼行數:49,代碼來源:evaler.py


注:本文中的util.log.warn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。