本文整理匯總了Python中util.log.infov方法的典型用法代碼示例。如果您正苦於以下問題:Python log.infov方法的具體用法?Python log.infov怎麽用?Python log.infov使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類util.log
的用法示例。
在下文中一共展示了log.infov方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: log_step_message
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def log_step_message(self, step, accuracy, d_loss, g_loss,
s_loss, step_time, is_train=True):
if step_time == 0: step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"Supervised loss: {s_loss:.5f} " +
"D loss: {d_loss:.5f} " +
"G loss: {g_loss:.5f} " +
"Accuracy: {accuracy:.5f} "
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step = step,
d_loss = d_loss,
g_loss = g_loss,
s_loss = s_loss,
accuracy = accuracy,
sec_per_batch = step_time,
instance_per_sec = self.batch_size / step_time
)
)
示例2: log_step_message
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def log_step_message(self, step, loss, loss_g_update,
loss_z_update, step_time, is_train=True):
if step_time == 0:
step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"Loss: {loss:.5f} " +
"G update: {loss_g_update:.5f} " +
"Z update: {loss_z_update:.5f} " +
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step=step,
loss=loss,
loss_z_update=loss_z_update,
loss_g_update=loss_g_update,
sec_per_batch=step_time,
instance_per_sec=self.batch_size / step_time
)
)
示例3: train
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def train(self, dataset):
log.infov("Training Starts!")
pprint(self.batch_train)
max_steps = 2500000
output_save_step = 1000
for s in xrange(max_steps):
step, summary, loss, loss_pair, loss_unpair, step_time = \
self.run_single_step(self.batch_train, dataset, step=s, is_train=True)
if s % 10 == 0:
self.log_step_message(step, loss, loss_pair, loss_unpair, step_time)
self.summary_writer.add_summary(summary, global_step=step)
if s % output_save_step == 0:
log.infov("Saved checkpoint at %d", s)
save_path = self.saver.save(self.session,
os.path.join(self.train_dir, 'model'),
global_step=step)
示例4: log_step_message
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def log_step_message(self, step, loss, loss_pair,
loss_unpair, step_time, is_train=True):
if step_time == 0:
step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"Loss: {loss:.5f} " +
"Loss pair: {loss_pair:.5f} " +
"Loss unpair: {loss_unpair:.5f} " +
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step=step,
loss=loss,
loss_pair=loss_pair,
loss_unpair=loss_unpair,
sec_per_batch=step_time,
instance_per_sec=self.batch_size / step_time
)
)
示例5: log_step_message
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def log_step_message(self, step, p_loss, f_loss, loss, step_time, is_train=True):
if step_time == 0: step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"Loss: {loss:.5f} " +
"Pixel loss: {p_loss:.5f} " +
"Flow loss: {f_loss:.5f} " +
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step=step,
loss=loss,
p_loss=p_loss,
f_loss=f_loss,
sec_per_batch=step_time,
instance_per_sec=self.batch_size / step_time
)
)
示例6: log_step_message
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def log_step_message(self, step, accuracy, accuracy_test, loss, step_time, is_train=True):
if step_time == 0: step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"Loss: {loss:.5f} " +
"Accuracy test: {accuracy:.2f} "
"Accuracy test: {accuracy_test:.2f} " +
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step = step,
loss = loss,
accuracy = accuracy*100,
accuracy_test = accuracy_test*100,
sec_per_batch = step_time,
instance_per_sec = self.batch_size / step_time
)
)
示例7: train
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def train(self):
log.infov("Training Starts!")
pprint(self.batch_train)
max_steps = 100000
output_save_step = 1000
for s in xrange(max_steps):
step, summary, d_loss, g_loss, step_time, prediction_train, gt_train = \
self.run_single_step(self.batch_train, step=s, is_train=True)
if s % 10 == 0:
self.log_step_message(step, d_loss, g_loss, step_time)
self.summary_writer.add_summary(summary, global_step=step)
if s % output_save_step == 0:
log.infov("Saved checkpoint at %d", s)
save_path = self.saver.save(self.session, os.path.join(self.train_dir, 'model'), global_step=step)
f = h5py.File(os.path.join(self.train_dir, 'generated_'+str(s)+'.hy'), 'w')
f['image'] = prediction_train
f.close()
示例8: dump_result
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def dump_result(self, filename):
log.infov("Dumping results into %s ...", filename)
f = h5py.File(filename, 'w')
merge_output_list = defaultdict(list)
for d in tuple(self._output):
for key in d.keys():
merge_output_list[key].append(d[key])
output_list = {}
for key in merge_output_list.keys():
stacked_output = np.stack(merge_output_list[key])
stacked_output = np.reshape(
stacked_output,
[np.prod(stacked_output.shape[:2])] +
list(stacked_output.shape[2:]))
f[key] = stacked_output
log.info("Dumping resultsn done.")
示例9: train
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def train(self):
log.infov("Training Starts!")
pprint(self.batch_train)
step = self.session.run(self.global_step)
for s in xrange(self.config.max_training_steps):
if s % self.config.ckpt_save_step == 0:
log.infov("Saved checkpoint at %d", s)
self.saver.save(self.session, os.path.join(
self.train_dir, 'model'), global_step=s)
step, summary, d_loss, g_loss, step_time = \
self.run_single_step(self.batch_train, step=s, is_train=True)
if s % self.config.log_step == 0:
self.log_step_message(step, d_loss, g_loss, step_time)
if s % self.config.write_summary_step == 0:
self.summary_writer.add_summary(summary, global_step=step)
示例10: report
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def report(self):
# report L2 loss
log.info("Computing scores...")
score = {}
score = []
for id, pred, gt in zip(self._ids, self._predictions, self._groundtruths):
score.append(self.compute_accuracy(pred, gt))
avg = np.average(score)
log.infov("Average accuracy : %.4f", avg*100)
示例11: eval_run
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def eval_run(self):
# load checkpoint
if self.checkpoint:
self.saver.restore(self.session, self.checkpoint)
log.info("Loaded from checkpoint!")
log.infov("Start 1-epoch Inference and Evaluation")
log.info("# of examples = %d", len(self.dataset))
length_dataset = len(self.dataset)
max_steps = int(length_dataset / self.batch_size) + 1
log.info("max_steps = %d", max_steps)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(self.session,
coord=coord, start=True)
evaler = EvalManager()
try:
for s in xrange(max_steps):
step, loss, step_time, batch_chunk, prediction_pred, prediction_gt = \
self.run_single_step(self.batch)
self.log_step_message(s, loss, step_time)
evaler.add_batch(batch_chunk['id'], prediction_pred, prediction_gt)
except Exception as e:
coord.request_stop(e)
coord.request_stop()
try:
coord.join(threads, stop_grace_period_secs=3)
except RuntimeError as e:
log.warn(str(e))
evaler.report()
log.infov("Evaluation complete.")
示例12: log_step_message
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def log_step_message(self, step, accuracy, step_time, is_train=False):
if step_time == 0: step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"batch total-accuracy (test): {test_accuracy:.2f}% " +
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step=step,
test_accuracy=accuracy*100,
sec_per_batch=step_time,
instance_per_sec=self.batch_size / step_time,
)
)
示例13: train
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def train(self):
log.infov("Training Starts!")
pprint(self.batch_train)
step = self.session.run(self.global_step)
for s in xrange(self.config.max_training_steps):
# periodic inference
if s % self.config.test_sample_step == 0:
accuracy, d_loss, g_loss, s_loss, step_time = \
self.run_test(self.batch_test, is_train=False)
self.log_step_message(step, accuracy, d_loss, g_loss,
s_loss, step_time, is_train=False)
step, accuracy, summary, d_loss, g_loss, s_loss, step_time, prediction_train, gt_train, g_img = \
self.run_single_step(self.batch_train, step=s)
if s % self.config.log_step == 0:
self.log_step_message(step, accuracy, d_loss, g_loss, s_loss, step_time)
if s % self.config.write_summary_step == 0:
self.summary_writer.add_summary(summary, global_step=step)
if s % self.config.output_save_step == 0:
log.infov("Saved checkpoint at %d", step)
save_path = self.saver.save(self.session, os.path.join(self.train_dir, 'model'), global_step=step)
if self.config.dump_result:
f = h5py.File(os.path.join(self.train_dir, 'g_img_'+str(s)+'.hdf5'), 'w')
f['image'] = g_img
f.close()
示例14: report
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def report(self):
log.info("Computing scores...")
total_loss = []
for id, pred, gt in zip(self._ids, self._predictions, self._groundtruths):
total_loss.append(self.compute_loss(pred, gt))
avg_loss = np.average(total_loss)
log.infov("Average loss : %.4f", avg_loss)
示例15: log_step_message
# 需要導入模塊: from util import log [as 別名]
# 或者: from util.log import infov [as 別名]
def log_step_message(self, step, loss, step_time, is_train=False):
if step_time == 0: step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"Loss (test): {loss:.5f} " +
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step=step,
loss=loss,
sec_per_batch=step_time,
instance_per_sec=self.batch_size / step_time,
)
)