當前位置: 首頁>>代碼示例>>Python>>正文


Python util.init_logger方法代碼示例

本文整理匯總了Python中util.init_logger方法的典型用法代碼示例。如果您正苦於以下問題:Python util.init_logger方法的具體用法?Python util.init_logger怎麽用?Python util.init_logger使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在util的用法示例。


在下文中一共展示了util.init_logger方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: config_initialization

# 需要導入模塊: import util [as 別名]
# 或者: from util import init_logger [as 別名]
def config_initialization():
    # image shape and feature layers shape inference
    image_shape = (FLAGS.train_image_height, FLAGS.train_image_width)
    
    if not FLAGS.dataset_dir:
        raise ValueError('You must supply the dataset directory with --dataset_dir')
    tf.logging.set_verbosity(tf.logging.DEBUG)
    util.init_logger(log_file = 'log_train_seglink_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a')
    
    
    config.init_config(image_shape, 
                       batch_size = FLAGS.batch_size, 
                       weight_decay = FLAGS.weight_decay, 
                       num_gpus = FLAGS.num_gpus, 
                       train_with_ignored = FLAGS.train_with_ignored,
                       seg_loc_loss_weight = FLAGS.seg_loc_loss_weight, 
                       link_cls_loss_weight = FLAGS.link_cls_loss_weight, 
                       )

    batch_size = config.batch_size
    batch_size_per_gpu = config.batch_size_per_gpu
        
    tf.summary.scalar('batch_size', batch_size)
    tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu)

    util.proc.set_proc_name(FLAGS.model_name + '_' + FLAGS.dataset_name)
    
    dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)
    config.print_config(FLAGS, dataset)
    return dataset 
開發者ID:dengdan,項目名稱:seglink,代碼行數:32,代碼來源:train_seglink.py

示例2: main

# 需要導入模塊: import util [as 別名]
# 或者: from util import init_logger [as 別名]
def main(_):
    util.init_logger()
    dump_path = util.io.get_absolute_path('~/temp/no-use/seglink/')
    
    dataset = config_initialization()
    batch_queue = create_dataset_batch_queue(dataset)
    batch_size = config.batch_size
    summary_op = tf.summary.merge_all()
    with tf.Session() as sess:
        tf.train.start_queue_runners(sess)
        b_image, b_seg_label, b_seg_offsets, b_link_label = batch_queue.dequeue()
        batch_idx = 0;
        while True: #batch_idx < 50:
            image_data_batch, seg_label_data_batch, seg_offsets_data_batch, link_label_data_batch = \
                            sess.run([b_image, b_seg_label, b_seg_offsets, b_link_label])
            for image_idx in xrange(batch_size):
                image_data = image_data_batch[image_idx, ...]
                seg_label_data = seg_label_data_batch[image_idx, ...]
                seg_offsets_data = seg_offsets_data_batch[image_idx, ...]
                link_label_data = link_label_data_batch[image_idx, ...]
                
                image_data = image_data + [123, 117, 104]
                image_data = np.asarray(image_data, dtype = np.uint8)
                
                # decode the encoded ground truth back to bboxes
                bboxes = seglink.seglink_to_bbox(seg_scores = seg_label_data, 
                                                 link_scores = link_label_data, 
                                                 seg_offsets_pred = seg_offsets_data)
                
                # draw bboxes on the image
                for bbox_idx in xrange(len(bboxes)):
                    bbox = bboxes[bbox_idx, :] 
                    draw_bbox(image_data, bbox)
                
                image_path = util.io.join_path(dump_path, '%d_%d.jpg'%(batch_idx, image_idx))
                util.plt.imwrite(image_path, image_data)
                print 'Make sure that the text on the image are correctly bounded\
                                                         with oriented boxes:', image_path 
            batch_idx += 1 
開發者ID:dengdan,項目名稱:seglink,代碼行數:41,代碼來源:test_batch_and_gt.py

示例3: config_initialization

# 需要導入模塊: import util [as 別名]
# 或者: from util import init_logger [as 別名]
def config_initialization():
    # image shape and feature layers shape inference
    image_shape = (FLAGS.train_image_height, FLAGS.train_image_width)
    
    if not FLAGS.dataset_dir:
        raise ValueError('You must supply the dataset directory with --dataset_dir')
    
    tf.logging.set_verbosity(tf.logging.DEBUG)
    util.init_logger(
        log_file = 'log_train_pixel_link_%d_%d.log'%image_shape, 
                    log_path = FLAGS.train_dir, stdout = False, mode = 'a')
    
    
    config.load_config(FLAGS.train_dir)
            
    config.init_config(image_shape, 
                       batch_size = FLAGS.batch_size, 
                       weight_decay = FLAGS.weight_decay, 
                       num_gpus = FLAGS.num_gpus
                   )

    batch_size = config.batch_size
    batch_size_per_gpu = config.batch_size_per_gpu
        
    tf.summary.scalar('batch_size', batch_size)
    tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu)

    util.proc.set_proc_name('train_pixel_link_on'+ '_' + FLAGS.dataset_name)
    
    dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)
    config.print_config(FLAGS, dataset)
    return dataset 
開發者ID:ZJULearning,項目名稱:pixel_link,代碼行數:34,代碼來源:train_pixel_link.py

示例4: get_cfg

# 需要導入模塊: import util [as 別名]
# 或者: from util import init_logger [as 別名]
def get_cfg(args, fixed_args):
  # Parse any additional args
  parser = argparse.ArgumentParser()

  parser.add_argument(
      '--recover-stack-vars',
      help='Flag to enable stack variable recovery',
      default=False,
      action='store_true')

  parser.add_argument(
      "--std-defs",
      action='append',
      type=str,
      default=[],
      help="std_defs file: definitions and calling conventions of imported functions and data")

  extra_args = parser.parse_args(fixed_args)

  if extra_args.recover_stack_vars:
    RECOVER_OPTS['stack_vars'] = True

  # Setup logger
  util.init_logger(args.log_file)

  # Load the binary in binja
  bv = util.load_binary(args.binary)

  # Once for good measure.
  bv.add_analysis_option("linearsweep")
  bv.update_analysis_and_wait()

  # Twice for good luck!
  bv.add_analysis_option("linearsweep")
  bv.update_analysis_and_wait()

  # Collect all paths to defs files
  log.debug('Parsing definitions files')
  def_paths = set(map(os.path.abspath, extra_args.std_defs))
  def_paths.add(os.path.join(DISASS_DIR, 'defs', '{}.txt'.format(args.os)))  # default defs file

  # Parse all of the defs files
  for fpath in def_paths:
    if os.path.isfile(fpath):
      parse_defs_file(bv, fpath)
    else:
      log.warn('%s is not a file', fpath)

  # Recover module
  log.debug('Starting analysis')
  pb_mod = recover_cfg(bv, args)

  # Save cfg
  log.debug('Saving to file: %s', args.output)
  with open(args.output, 'wb') as f:
    f.write(pb_mod.SerializeToString())

  return 0 
開發者ID:lifting-bits,項目名稱:mcsema,代碼行數:60,代碼來源:cfg.py


注:本文中的util.init_logger方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。