當前位置: 首頁>>代碼示例>>Python>>正文


Python image_pool.ImagePool方法代碼示例

本文整理匯總了Python中util.image_pool.ImagePool方法的典型用法代碼示例。如果您正苦於以下問題:Python image_pool.ImagePool方法的具體用法?Python image_pool.ImagePool怎麽用?Python image_pool.ImagePool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在util.image_pool的用法示例。


在下文中一共展示了image_pool.ImagePool方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: initialize

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def initialize(self, opt):
        BaseModel.initialize(self, opt)
        self.isTrain = opt.isTrain
        # specify the training losses you want to print out. The program will call base_model.get_current_losses
        self.loss_names = ['G_GAN',  'G_L1', 'G_Ang', 'D_real', 'D_fake']
        # specify the images you want to save/display. The program will call base_model.get_current_visuals
        self.visual_names = ['real_A', 'fake_B', 'real_B']
        # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks
        if self.isTrain:
            self.model_names = ['G', 'D']
        else:  # during test time, only load Gs
            self.model_names = ['G']
        # load/define networks
        self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
                                      opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
                                          opt.which_model_netD,
                                          opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:
            self.fake_AB_pool = ImagePool(opt.pool_size)
            # define loss functions
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan).to(self.device)
            self.criterionL1 = torch.nn.L1Loss()
            self.criterionAngular = angular_loss.angular_loss()

            # initialize optimizers
            self.optimizers = []
            self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D) 
開發者ID:acecreamu,項目名稱:angularGAN,代碼行數:39,代碼來源:angular_gan_v2_model.py

示例2: initialize

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def initialize(self, opt):
        BaseModel.initialize(self, opt)
        self.isTrain = opt.isTrain
        # specify the training losses you want to print out. The program will call base_model.get_current_losses
        self.loss_names = ['G_GAN', 'G_L1', 'G_Ang', 'D_real', 'D_fake']
        # specify the images you want to save/display. The program will call base_model.get_current_visuals
        self.visual_names = ['real_A', 'fake_B', 'real_B']
        # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks
        if self.isTrain:
            self.model_names = ['G', 'D']
        else:  # during test time, only load Gs
            self.model_names = ['G']
        # load/define networks
        self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
                                      opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
                                          opt.which_model_netD,
                                          opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:
            self.fake_AB_pool = ImagePool(opt.pool_size)
            # define loss functions
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan).to(self.device)
            self.criterionL1 = torch.nn.L1Loss()
            self.criterionAngular = angular_loss.angular_loss()

            # initialize optimizers
            self.optimizers = []
            self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D) 
開發者ID:acecreamu,項目名稱:angularGAN,代碼行數:39,代碼來源:angular_gan_model.py

示例3: __init__

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def __init__(self, opt):
        """Initialize the CycleGAN class.

        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
        """
        BaseModel.__init__(self, opt)
        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ['real_A', 'fake_B', 'rec_A']
        visual_names_B = ['real_B', 'fake_A', 'rec_B']
        if self.isTrain and self.opt.lambda_identity > 0.0:  # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
            visual_names_A.append('idt_B')
            visual_names_B.append('idt_A')

        self.visual_names = visual_names_A + visual_names_B  # combine visualizations for A and B
        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
        else:  # during test time, only load Gs
            self.model_names = ['G_A', 'G_B']

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:  # define discriminators
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:
            if opt.lambda_identity > 0.0:  # only works when input and output images have the same number of channels
                assert(opt.input_nc == opt.output_nc)
            self.fake_A_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)  # define GAN loss.
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
            self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D) 
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:53,代碼來源:cycle_gan_model.py

示例4: initialize

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def initialize(self, opt):
        BaseModel.initialize(self, opt)

        nb = opt.batchSize
        size = opt.fineSize
        self.input_A = self.Tensor(nb, opt.input_nc, size, size)
        self.input_B = self.Tensor(nb, opt.output_nc, size, size)

        # load/define networks
        # The naming conversion is different from those used in the paper
        # Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)

        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
                                        opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc,
                                        opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)

        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)
        if not self.isTrain or opt.continue_train:
            which_epoch = opt.which_epoch
            self.load_network(self.netG_A, 'G_A', which_epoch)
            self.load_network(self.netG_B, 'G_B', which_epoch)
            if self.isTrain:
                self.load_network(self.netD_A, 'D_A', which_epoch)
                self.load_network(self.netD_B, 'D_B', which_epoch)

        if self.isTrain:
            self.old_lr = opt.lr
            self.fake_A_pool = ImagePool(opt.pool_size)
            self.fake_B_pool = ImagePool(opt.pool_size)
            # define loss functions
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers
            self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizers = []
            self.schedulers = []
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D_A)
            self.optimizers.append(self.optimizer_D_B)
            for optimizer in self.optimizers:
                self.schedulers.append(networks.get_scheduler(optimizer, opt))

        print('---------- Networks initialized -------------')
        networks.print_network(self.netG_A)
        networks.print_network(self.netG_B)
        if self.isTrain:
            networks.print_network(self.netD_A)
            networks.print_network(self.netD_B)
        print('-----------------------------------------------') 
開發者ID:aayushbansal,項目名稱:Recycle-GAN,代碼行數:63,代碼來源:cycle_gan_model.py

示例5: initialize

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def initialize(self, opt):
        BaseModel.initialize(self, opt)
        self.isTrain = opt.isTrain
        # define tensors
        self.input_A = self.Tensor(opt.batchSize, opt.input_nc,
                                   opt.fineSize, opt.fineSize)
        self.input_B = self.Tensor(opt.batchSize, opt.output_nc,
                                   opt.fineSize, opt.fineSize)
        self.label = self.Tensor(opt.batchSize,1)
        if opt.nz>0:
            self.noise=self.Tensor(opt.batchSize,opt.nz)
        # load/define networks
        opt.which_model_netG = 'StochasticLabelBetaChannelGatedResnetConvResnetG'

        self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
                                      opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids,opt)
        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            opt.which_model_netD = 'LabelChannelGatedResnetConvResnetD'
            self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
                                          opt.which_model_netD,
                                          opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids,opt)
            self.netD.cuda()
        self.netG.cuda()
        if not self.isTrain or opt.continue_train:
            self.load_network(self.netG, 'G', opt.which_epoch)
            if self.isTrain:
                self.load_network(self.netD, 'D', opt.which_epoch)

        if self.isTrain:
            self.fake_AB_pool = ImagePool(opt.pool_size)
            self.old_lr = opt.lr
            # define loss functions
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
            self.criterionL1 = torch.nn.L1Loss()
            # initialize optimizers
            self.schedulers = []
            self.optimizers = []
            self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
                                                lr=opt.lr_g, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
                                                lr=opt.lr_d, betas=(opt.beta1, 0.999))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D)
            for optimizer in self.optimizers:
                self.schedulers.append(networks.get_scheduler(optimizer, opt))

        print('---------- Networks initialized -------------')
        networks.print_network(self.netG)
        if self.isTrain:
            networks.print_network(self.netD)
        print('-----------------------------------------------') 
開發者ID:arnabgho,項目名稱:iSketchNFill,代碼行數:54,代碼來源:stochastic_label_channel_gated_pix2pix_model.py

示例6: initialize

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def initialize(self, opt):
        BaseModel.initialize(self, opt)
        self.isTrain = opt.isTrain
        # define tensors
        self.input_A = self.Tensor(opt.batchSize, opt.input_nc,
                                   int(opt.fineSize / 2), int(opt.fineSize / 2))
        self.input_B = self.Tensor(opt.batchSize, opt.output_nc,
                                   opt.fineSize, opt.fineSize)


        self.style_layers = ['r11', 'r21', 'r31', 'r41', 'r51']
        # self.content_layers = ['r42']
        self.loss_layers = self.style_layers
        self.loss_fns = [GramMSELoss()] * len(self.style_layers)
        if torch.cuda.is_available():
            self.loss_fns = [loss_fn.cuda() for loss_fn in self.loss_fns]
        self.vgg = VGG()
        self.vgg.load_state_dict(torch.load(os.getcwd() + '/Models/' + 'vgg_conv.pth'))
        for param in self.vgg.parameters():
            param.requires_grad = False
        if torch.cuda.is_available():
            self.vgg.cuda()

        print(self.vgg.state_dict().keys())

        self.style_weights = [1e3 / n ** 2 for n in [64, 128, 256, 512, 512]]
        # self.content_weights = [1e0]
        self.weights = self.style_weights

        # load/define networks
        self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
                                      opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids)
        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD = networks.define_D(opt.output_nc, opt.ndf,
                                          opt.which_model_netD,
                                          opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
        if not self.isTrain or opt.continue_train:
            self.load_network(self.netG, 'G', opt.which_epoch)
            if self.isTrain:
                self.load_network(self.netD, 'D', opt.which_epoch)

        if self.isTrain:
            self.fake_AB_pool = ImagePool(opt.pool_size)
            self.old_lr = opt.lr
            # define loss functions
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
            self.criterionL1 = torch.nn.L1Loss()

            # initialize optimizers
            self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))

        print('---------- Networks initialized -------------')
        networks.print_network(self.netG)
        if self.isTrain:
            networks.print_network(self.netD)
        print('-----------------------------------------------') 
開發者ID:jessemelpolio,項目名稱:non-stationary_texture_syn,代碼行數:62,代碼來源:half_gan_style.py

示例7: initialize

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def initialize(self, opt):
        BaseModel.initialize(self, opt)

        # specify the training losses you want to print out. The program will call base_model.get_current_losses
        self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
        # specify the images you want to save/display. The program will call base_model.get_current_visuals
        visual_names_A = ['real_A', 'fake_B', 'rec_A']
        visual_names_B = ['real_B', 'fake_A', 'rec_B']
        if self.isTrain and self.opt.lambda_identity > 0.0:
            visual_names_A.append('idt_A')
            visual_names_B.append('idt_B')

        self.visual_names = visual_names_A + visual_names_B
        # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks
        if self.isTrain:
            self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
        else:  # during test time, only load Gs
            self.model_names = ['G_A', 'G_B']

        # load/define networks
        # The naming conversion is different from those used in the paper
        # Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
                                        opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc,
                                        opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)

        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf,
                                            opt.which_model_netD,
                                            opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)

        if self.isTrain:
            self.fake_A_pool = ImagePool(opt.pool_size)
            self.fake_B_pool = ImagePool(opt.pool_size)
            # define loss functions
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan).to(self.device)
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers
            self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()),
                                                lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizers = []
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D) 
開發者ID:Luodian,項目名稱:MADAN,代碼行數:53,代碼來源:cycle_gan_model.py

示例8: __init__

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def __init__(self, opt):
        """Initialize the CycleGAN class.

        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
        """
        BaseModel.__init__(self, opt)
        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ['real_A', 'fake_B', 'rec_A']
        visual_names_B = ['real_B', 'fake_A', 'rec_B']
        if self.isTrain and self.opt.lambda_identity > 0.0:  # if identity loss is used, we also visualize G_B(A) ad G_A(B)
            visual_names_A.append('idt_A')
            visual_names_B.append('idt_B')

        self.visual_names = visual_names_A + visual_names_B  # combine visualizations for A and B
        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
        else:  # during test time, only load Gs
            self.model_names = ['G_A', 'G_B']

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:  # define discriminators
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:
            if opt.lambda_identity > 0.0:  # only works when input and output images have the same number of channels
                assert(opt.input_nc == opt.output_nc)
            self.fake_A_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)  # define GAN loss.
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
            self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D) 
開發者ID:RogerZhangzz,項目名稱:CAG_UDA,代碼行數:53,代碼來源:cycle_gan_model.py

示例9: __init__

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def __init__(self, opt):
        super(ComboGANModel, self).__init__(opt)

        self.n_domains = opt.n_domains
        self.DA, self.DB = None, None

        self.real_A = self.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
        self.real_B = self.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)

        # load/define networks
        self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
                                      opt.netG_n_blocks, opt.netG_n_shared,
                                      self.n_domains, opt.norm, opt.use_dropout, self.gpu_ids)
        if self.isTrain:
            self.netD = networks.define_D(opt.output_nc, opt.ndf, opt.netD_n_layers,
                                          self.n_domains, self.Tensor, opt.norm, self.gpu_ids)

        if not self.isTrain or opt.continue_train:
            which_epoch = opt.which_epoch
            self.load_network(self.netG, 'G', which_epoch)
            if self.isTrain:
                self.load_network(self.netD, 'D', which_epoch)

        if self.isTrain:
            self.fake_pools = [ImagePool(opt.pool_size) for _ in range(self.n_domains)]
            # define loss functions
            self.L1 = torch.nn.SmoothL1Loss()
            self.downsample = torch.nn.AvgPool2d(3, stride=2)
            self.criterionCycle = self.L1
            self.criterionIdt = lambda y,t : self.L1(self.downsample(y), self.downsample(t))
            self.criterionLatent = lambda y,t : self.L1(y, t.detach())
            self.criterionGAN = lambda r,f,v : (networks.GANLoss(r[0],f[0],v) + \
                                                networks.GANLoss(r[1],f[1],v) + \
                                                networks.GANLoss(r[2],f[2],v)) / 3
            # initialize optimizers
            self.netG.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
            self.netD.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
            # initialize loss storage
            self.loss_D, self.loss_G = [0]*self.n_domains, [0]*self.n_domains
            self.loss_cycle = [0]*self.n_domains
            # initialize loss multipliers
            self.lambda_cyc, self.lambda_enc = opt.lambda_cycle, (0 * opt.lambda_latent)
            self.lambda_idt, self.lambda_fwd = opt.lambda_identity, opt.lambda_forward

        print('---------- Networks initialized -------------')
        print(self.netG)
        if self.isTrain:
            print(self.netD)
        print('-----------------------------------------------') 
開發者ID:AAnoosheh,項目名稱:ToDayGAN,代碼行數:51,代碼來源:combogan_model.py

示例10: __init__

# 需要導入模塊: from util import image_pool [as 別名]
# 或者: from util.image_pool import ImagePool [as 別名]
def __init__(self, opt):
        super(ComboGANModel, self).__init__(opt)

        self.n_domains = opt.n_domains
        self.DA, self.DB = None, None

        self.real_A = self.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
        self.real_B = self.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)

        # load/define networks
        self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
                                      opt.netG_n_blocks, opt.netG_n_shared,
                                      self.n_domains, opt.norm, opt.use_dropout, self.gpu_ids)
        if self.isTrain:
            blur_fn = lambda x : torch.nn.functional.conv2d(x, self.Tensor(util.gkern_2d()), groups=3, padding=2)
            self.netD = networks.define_D(opt.output_nc, opt.ndf, opt.netD_n_layers,
                                          self.n_domains, blur_fn, opt.norm, self.gpu_ids)

        if not self.isTrain or opt.continue_train:
            which_epoch = opt.which_epoch
            self.load_network(self.netG, 'G', which_epoch)
            if self.isTrain:
                self.load_network(self.netD, 'D', which_epoch)

        if self.isTrain:
            self.fake_pools = [ImagePool(opt.pool_size) for _ in range(self.n_domains)]
            # define loss functions
            self.L1 = torch.nn.SmoothL1Loss()
            self.downsample = torch.nn.AvgPool2d(3, stride=2)
            self.criterionCycle = self.L1
            self.criterionIdt = lambda y,t : self.L1(self.downsample(y), self.downsample(t))
            self.criterionLatent = lambda y,t : self.L1(y, t.detach())
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
            # initialize optimizers
            self.netG.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
            self.netD.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
            # initialize loss storage
            self.loss_D, self.loss_G = [0]*self.n_domains, [0]*self.n_domains
            self.loss_cycle = [0]*self.n_domains
            # initialize loss multipliers
            self.lambda_cyc, self.lambda_enc = opt.lambda_cycle, (0 * opt.lambda_latent)
            self.lambda_idt, self.lambda_fwd = opt.lambda_identity, opt.lambda_forward

        print('---------- Networks initialized -------------')
        print(self.netG)
        if self.isTrain:
            print(self.netD)
        print('-----------------------------------------------') 
開發者ID:AAnoosheh,項目名稱:ComboGAN,代碼行數:50,代碼來源:combogan_model.py


注:本文中的util.image_pool.ImagePool方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。