當前位置: 首頁>>代碼示例>>Python>>正文


Python util.flatten方法代碼示例

本文整理匯總了Python中util.flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python util.flatten方法的具體用法?Python util.flatten怎麽用?Python util.flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在util的用法示例。


在下文中一共展示了util.flatten方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: issue_to_changelog

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def issue_to_changelog(issue):
    return dict(
        [
            ('key', issue.key),
            (
                'changelog',
                [
                    (u'Created', parse_date(issue.fields.created))
                ] + flatten([
                    [
                        (i.toString, parse_date(h.created))
                        for i in h.items if i.field == 'status'
                    ] for h in issue.changelog.histories
                ])
            )
        ]
    ) 
開發者ID:soundcloud,項目名稱:project-dev-kpis,代碼行數:19,代碼來源:jira_util.py

示例2: encode

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def encode(self, data=None):
		"""
		Use a generator to yield each encoded bit. This supports being able to
		encode a list of values, where each value will be sequentially encoded.
		This function can also encode single values.
		
		@param data: The data to encode. If it isn't provided the encoder's
		data is used.
		"""
		
		if data is None:
			data = self.raw_data
		
		# Make a list to account for single inputs
		for x in flatten([data]):
			for bit in flatten([self._encode(x)]):
				yield bit 
開發者ID:tehtechguy,項目名稱:mHTM,代碼行數:19,代碼來源:base.py

示例3: load_eval_data

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def load_eval_data(self):
    eval_data = []
    eval_tensors = []
    coref_eval_data = []
    with open(self.config["eval_path"]) as f:
      eval_examples = [json.loads(jsonline) for jsonline in f.readlines()]
    populate_sentence_offset(eval_examples)
    for doc_id, example in enumerate(eval_examples):
      doc_tensors = []
      num_mentions_in_doc = 0
      for e in self.split_document_example(example):
        # Because each batch=1 document at test time, we do not need to offset cluster ids.
        e["cluster_id_offset"] = 0
        e["doc_id"] = doc_id + 1
        doc_tensors.append(self.tensorize_example(e, is_training=False))
        #num_mentions_in_doc += len(e["coref"])
      #assert num_mentions_in_doc == len(util.flatten(example["clusters"]))
      eval_tensors.append(doc_tensors)
      eval_data.extend(srl_eval_utils.split_example_for_eval(example))
      coref_eval_data.append(example)
    print("Loaded {} eval examples.".format(len(eval_data)))
    return eval_data, eval_tensors, coref_eval_data 
開發者ID:luheng,項目名稱:lsgn,代碼行數:24,代碼來源:lsgn_data.py

示例4: count

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def count(data_file):
    f = open(data_file)
    max_num_sp = 0
    overlap, total = 0, 0
    for i, line in enumerate(f):
        # print('---', line)
        data = json.loads(line)
        clusters = util.flatten(data['clusters'])
        clusters = [tuple(c) for c in clusters]
        for c1 in clusters:
          for c2 in clusters:
            if c1 == c2:
              continue
            total += 1
            if (is_overlap(c1, c2)) or (is_overlap(c2, c1)):
              overlap += 1
              # print('overlap', c1, c2)
            # else:
              # print('non-overlap', c1, c2)
    print(overlap, total, overlap * 100.0 / total)

    print('max_num_sp', max_num_sp) 
開發者ID:mandarjoshi90,項目名稱:coref,代碼行數:24,代碼來源:count.py

示例5: intFloor

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def intFloor(*args):
    return [int(math.floor(x)) for x in flatten(args)] 
開發者ID:teachthenet,項目名稱:TeachCraft-Challenges,代碼行數:4,代碼來源:minecraft.py

示例6: print_predictions

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def print_predictions(example):
  words = util.flatten(example["sentences"])
  for cluster in example["predicted_clusters"]:
    print(u"Predicted cluster: {}".format([" ".join(words[m[0]:m[1]+1]) for m in cluster])) 
開發者ID:sattree,項目名稱:gap,代碼行數:6,代碼來源:demo.py

示例7: finalize

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def finalize(self):
    merged_clusters = []
    for c1 in self.clusters.values():
      existing = None
      for m in c1:
        for c2 in merged_clusters:
          if m in c2:
            existing = c2
            break
        if existing is not None:
          break
      if existing is not None:
        print("Merging clusters (shouldn't happen very often.)")
        existing.update(c1)
      else:
        merged_clusters.append(set(c1))
    merged_clusters = [list(c) for c in merged_clusters]
    all_mentions = util.flatten(merged_clusters)
    assert len(all_mentions) == len(set(all_mentions))

    return {
      "doc_key": self.doc_key,
      "sentences": self.sentences,
      "speakers": self.speakers,
      "constituents": self.span_dict_to_list(self.constituents),
      "ner": self.span_dict_to_list(self.ner),
      "clusters": merged_clusters
    } 
開發者ID:sattree,項目名稱:gap,代碼行數:30,代碼來源:minimize.py

示例8: papers_file

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def papers_file(self):
        for file_obj in util.flatten(self.input()):
            if 'paper' in file_obj.path:
                return file_obj 
開發者ID:macks22,項目名稱:dblp,代碼行數:6,代碼來源:filtering.py

示例9: get_children

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def get_children(self) -> List[AstNode]:
        return util.flatten(x.get_children() for x in self.children) 
開發者ID:TuringApp,項目名稱:Turing,代碼行數:4,代碼來源:BlockStmt.py

示例10: evaluate

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def evaluate(fname):
    p, r, f1 = [], [], []
    pronoun_text = defaultdict(int)
    num_gold_pairs, num_pred_pairs = 0, 0
    total_gold_singletons, total_pred_singletons, total_singleton_intersection = 0, 0, 0
    with open(fname) as f:
        for line in f:
            datum = json.loads(line)
            tokens = flatten(datum['sentences'])
            #pronouns = flatten(datum['clusters'])
            pair_fn = get_mention_pairs
            # for pidx in pronouns:
                # pronoun_text[(tokens[pidx].lower())] += 1
            gold_pronoun_mention_pairs, gold_singletons = pair_fn(datum['clusters'], flatten(datum['clusters']))
            pred_pronoun_mention_pairs, pred_singletons = pair_fn(datum['predicted_clusters'], flatten(datum['predicted_clusters']))
            total_gold_singletons += len(gold_singletons)
            total_pred_singletons += len(pred_singletons)
            total_singleton_intersection += len(gold_singletons.intersection(pred_singletons))
            intersection = gold_pronoun_mention_pairs.intersection(pred_pronoun_mention_pairs)
            num_gold_pairs += len(gold_pronoun_mention_pairs)
            num_pred_pairs += len(pred_pronoun_mention_pairs)
            this_recall = len(intersection) / len(gold_pronoun_mention_pairs) if  len(gold_pronoun_mention_pairs) > 0 else 1.0
            this_prec = len(intersection) / len(pred_pronoun_mention_pairs) if  len(pred_pronoun_mention_pairs) > 0 else 1.0
            this_f1 = 2 * this_recall * this_prec / (this_recall + this_prec) if this_recall + this_prec > 0 else 0
            p += [this_prec]
            r += [this_recall]
            f1 += [this_f1]
    print('gold_singletons: {}, pred_singletons: {} intersection: {}'.format(total_gold_singletons, total_pred_singletons, total_singleton_intersection))
    print('num_gold: {}, num_pred: {}, P: {}, R: {} F1: {}'.format(num_gold_pairs, num_pred_pairs, sum(p) / len(p), sum(r) / len(r), sum(f1) / len(f1)))
    #print(sum(pronoun_text.values()), sorted(list(pronoun_text.items()), key=lambda k : k[1])) 
開發者ID:mandarjoshi90,項目名稱:coref,代碼行數:32,代碼來源:pronoun_evaluation.py

示例11: print_clusters

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def print_clusters(data_file):
    f = open(data_file)
    for i, line in enumerate(f):
      data = json.loads(line)
      text = util.flatten(data['sentences'])
      # clusters = [[text[s:e+1] for s,e in cluster] for cluster in data['clusters']]
      #print(text)
      for ci, cluster in enumerate(data['clusters']):
        spans = [text[s:e+1] for s,e in cluster]
        print(i, ci, spans)
      if i > 5:
        break 
開發者ID:mandarjoshi90,項目名稱:coref,代碼行數:14,代碼來源:print_clusters.py

示例12: compare_json

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def compare_json(json1, json2):
    json1 = read_file(json1)
    json2 = read_file(json2)
    for i, (l1, l2) in enumerate(zip(json1, json2)):
        assert l1['doc_key'] == l2['doc_key']
        if tuple(util.flatten(l1['sentences'])) != tuple(util.flatten(l2['sentences'])):
            print(i, l1['doc_key'], list(enumerate(util.flatten(l1['sentences']))), list(enumerate(util.flatten(l2['sentences']))))
            for j, (w1, w2) in enumerate(zip(util.flatten(l1['sentences']), util.flatten(l2['sentences']))):
                if w1 != w2:
                    print(j, w1, w2)
            break 
開發者ID:mandarjoshi90,項目名稱:coref,代碼行數:13,代碼來源:compare.py

示例13: avg_len

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def avg_len(data_file):
    f = open(data_file)
    total = 0
    max_num_sp = 0
    segments = []
    for i, line in enumerate(f):
        # print('---', line)
        data = json.loads(line)
        text = util.flatten(data['sentences'])
        segments.append(len(data['sentences']))
        total += len(text)
        max_num_sp = max(max_num_sp, len(text))
    print(total / i)
    print(max_num_sp)
    print(len(segments), sum(segments) / len(segments), max(segments), sum([1 for s in segments if s == 1])) 
開發者ID:mandarjoshi90,項目名稱:coref,代碼行數:17,代碼來源:count.py

示例14: convert

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def convert(json_file, tsv_file):
    data = read_json(json_file)
    tsv = read_tsv_file(tsv_file) if tsv_file is not None else None
    predictions = ['\t'.join(['ID', 'A-coref', 'B-coref'])]
    for key, datum in data.items():
        prediction = data[key]
        sents = util.flatten(prediction['sentences'])
        if tsv is not None:
            print(list(enumerate(tsv[key])))
            a_offset, b_offset, pronoun_offset = tuple(map(int, tsv[key][5].split(':'))), tuple(map(int, tsv[key][8].split(':'))), tuple(map(int, tsv[key][3].split(':')))
            assert ' '.join(sents[a_offset[0]:a_offset[1]]) == tsv[key][4], (sents[a_offset[0]:a_offset[1]], tsv[key][4])
            assert ' '.join(sents[b_offset[0]:b_offset[1]]) == tsv[key][7], (sents[b_offset[0]:b_offset[1]], tsv[key][7])
            assert ' '.join(sents[pronoun_offset[0]:pronoun_offset[1]]) == tsv[key][2], (sents[pronoun_offset[0]:pronoun_offset[1]], tsv[key][2])
        # continue
        pronoun_cluster = find_pronoun_cluster(prediction, prediction['pronoun_subtoken_span'])
        a_coref, b_coref = 'FALSE', 'FALSE'
        a_text, b_text = (tsv[key][4], tsv[key][7]) if tsv is not None else (None, None)
        for span in pronoun_cluster:
            a_aligned = is_aligned(span, prediction['a_subtoken_span']) if tsv is None else is_substring_aligned(span, sents, a_text)
            b_aligned = is_aligned(span, prediction['b_subtoken_span']) if tsv is None else is_substring_aligned(span, sents, b_text)

            if a_aligned:
                a_coref = 'TRUE'
            if b_aligned:
                b_coref = 'TRUE'
        predictions += ['\t'.join([key, a_coref, b_coref])]
    # write file
    with open(json_file.replace('jsonlines', 'tsv'), 'w') as f:
        f.write('\n'.join(predictions)) 
開發者ID:mandarjoshi90,項目名稱:coref,代碼行數:31,代碼來源:to_gap_tsv.py

示例15: tensorize_example

# 需要導入模塊: import util [as 別名]
# 或者: from util import flatten [as 別名]
def tensorize_example(self, example, is_training):
    clusters = example["clusters"]

    gold_mentions = sorted(tuple(m) for m in util.flatten(clusters))
    gold_mention_map = {m:i for i,m in enumerate(gold_mentions)}
    cluster_ids = np.zeros(len(gold_mentions))
    for cluster_id, cluster in enumerate(clusters):
      for mention in cluster:
        cluster_ids[gold_mention_map[tuple(mention)]] = cluster_id + 1

    sentences = example["sentences"]
    num_words = sum(len(s) for s in sentences)
    speakers = util.flatten(example["speakers"])

    assert num_words == len(speakers)

    max_sentence_length = max(len(s) for s in sentences)
    max_word_length = max(max(max(len(w) for w in s) for s in sentences), max(self.config["filter_widths"]))
    text_len = np.array([len(s) for s in sentences])
    tokens = [[""] * max_sentence_length for _ in sentences]
    context_word_emb = np.zeros([len(sentences), max_sentence_length, self.context_embeddings.size])
    head_word_emb = np.zeros([len(sentences), max_sentence_length, self.head_embeddings.size])
    char_index = np.zeros([len(sentences), max_sentence_length, max_word_length])
    for i, sentence in enumerate(sentences):
      for j, word in enumerate(sentence):
        tokens[i][j] = word
        context_word_emb[i, j] = self.context_embeddings[word]
        head_word_emb[i, j] = self.head_embeddings[word]
        char_index[i, j, :len(word)] = [self.char_dict[c] for c in word]
    tokens = np.array(tokens)

    speaker_dict = { s:i for i,s in enumerate(set(speakers)) }
    speaker_ids = np.array([speaker_dict[s] for s in speakers])

    doc_key = example["doc_key"]
    genre = self.genres[doc_key[:2]]

    gold_starts, gold_ends = self.tensorize_mentions(gold_mentions)

    lm_emb = self.load_lm_embeddings(doc_key)

    example_tensors = (tokens, context_word_emb, head_word_emb, lm_emb, char_index, text_len, speaker_ids, genre, is_training, gold_starts, gold_ends, cluster_ids)

    if is_training and len(sentences) > self.config["max_training_sentences"]:
      return self.truncate_example(*example_tensors)
    else:
      return example_tensors 
開發者ID:kentonl,項目名稱:e2e-coref,代碼行數:49,代碼來源:coref_model.py


注:本文中的util.flatten方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。