本文整理匯總了Python中typing.Deque方法的典型用法代碼示例。如果您正苦於以下問題:Python typing.Deque方法的具體用法?Python typing.Deque怎麽用?Python typing.Deque使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類typing
的用法示例。
在下文中一共展示了typing.Deque方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import typing [as 別名]
# 或者: from typing import Deque [as 別名]
def __init__(self, bot: Bot):
super().__init__()
self.bot = bot
# Categories
self.available_category: discord.CategoryChannel = None
self.in_use_category: discord.CategoryChannel = None
self.dormant_category: discord.CategoryChannel = None
# Queues
self.channel_queue: asyncio.Queue[discord.TextChannel] = None
self.name_queue: t.Deque[str] = None
self.name_positions = self.get_names()
self.last_notification: t.Optional[datetime] = None
# Asyncio stuff
self.queue_tasks: t.List[asyncio.Task] = []
self.ready = asyncio.Event()
self.on_message_lock = asyncio.Lock()
self.init_task = self.bot.loop.create_task(self.init_cog())
示例2: backward
# 需要導入模塊: import typing [as 別名]
# 或者: from typing import Deque [as 別名]
def backward(ctx: Context,
*grad_output: Tensor,
) -> Tuple[Optional[Tensor], ...]:
prev_stream = ctx.prev_stream
next_stream = ctx.next_stream
grad_input: Deque[Tensor] = deque(maxlen=len(grad_output))
input_stream = current_stream(get_device(prev_stream))
with use_stream(prev_stream), use_stream(next_stream):
for x in reversed(grad_output):
y = x.to(get_device(prev_stream))
grad_input.appendleft(y)
# 'next_stream' is not where 'x' has been allocated.
record_stream(x, next_stream)
# 'y' has been allocated on 'prev_stream'.
# It might be used on the current stream captured as 'input_stream'.
record_stream(y, input_stream)
grad_streams: Tuple[Optional[Tensor], ...] = (None, None)
return grad_streams + tuple(grad_input)
示例3: save_rng_states
# 需要導入模塊: import typing [as 別名]
# 或者: from typing import Deque [as 別名]
def save_rng_states(device: torch.device,
rng_states: Deque[RNGStates],
) -> None:
""":meth:`Checkpoint.forward` captures the current PyTorch's random number
generator states at CPU and GPU to reuse in :meth:`Recompute.backward`.
.. seealso:: :ref:`Referential Transparency`
"""
cpu_rng_state = torch.get_rng_state()
gpu_rng_state: Optional[ByteTensor]
if device.type == 'cuda':
gpu_rng_state = torch.cuda.get_rng_state(device)
else:
gpu_rng_state = None
rng_states.append((cpu_rng_state, gpu_rng_state))
示例4: restore_rng_states
# 需要導入模塊: import typing [as 別名]
# 或者: from typing import Deque [as 別名]
def restore_rng_states(device: torch.device,
rng_states: Deque[RNGStates],
) -> Generator[None, None, None]:
""":meth:`Recompute.backward` restores the random number generator states
captured by :func:`save_rng_states` within its context.
.. seealso:: :ref:`Referential Transparency`
"""
cpu_rng_state, gpu_rng_state = rng_states.pop()
gpu_devices: List[torch.device] = []
if device.type == 'cuda':
gpu_devices.append(device)
with torch.random.fork_rng(gpu_devices):
torch.set_rng_state(cpu_rng_state)
if gpu_rng_state is not None:
torch.cuda.set_rng_state(gpu_rng_state, device)
yield
示例5: forward
# 需要導入模塊: import typing [as 別名]
# 或者: from typing import Deque [as 別名]
def forward(ctx: Context, # type: ignore
phony: Tensor,
recomputed: Deque[Recomputed],
rng_states: Deque[RNGStates],
function: Function,
input_atomic: bool,
*input: Tensor,
) -> TensorOrTensors:
ctx.recomputed = recomputed
ctx.rng_states = rng_states
save_rng_states(input[0].device, ctx.rng_states)
ctx.function = function
ctx.input_atomic = input_atomic
ctx.save_for_backward(*input)
with torch.no_grad(), enable_checkpointing():
output = function(input[0] if input_atomic else input)
return output