本文整理匯總了Python中tvm.relay.build_config方法的典型用法代碼示例。如果您正苦於以下問題:Python relay.build_config方法的具體用法?Python relay.build_config怎麽用?Python relay.build_config使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tvm.relay
的用法示例。
在下文中一共展示了relay.build_config方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compile_nnvm
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def compile_nnvm(symbol, target, input_names, inputs, params,
opt_level):
import nnvm
import nnvm.compiler
shape_dict = {}
dtype_dict = {}
for name, value in zip(input_names, inputs.values()):
shape_dict[name] = value.shape
dtype_dict[name] = value.dtype
for name, value in params.items():
shape_dict[name] = value.shape
dtype_dict[name] = value.dtype
with nnvm.compiler.build_config(opt_level=opt_level):
graph, lib, params = nnvm.compiler.build(symbol, target,
shape=shape_dict,
dtype=dtype_dict,
params=params)
return graph, lib, params
示例2: build_graph_relay
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def build_graph_relay(args, ctx, onnx_model, inputs, input_names):
import tvm.relay as relay
shape_dict = {}
dtype_dict = {}
for name, value in zip(input_names, inputs.values()):
shape_dict[name] = value.shape
dtype_dict[name] = value.dtype
mod, params = relay.frontend.from_onnx(onnx_model, shape=shape_dict)
with relay.build_config(opt_level=args.opt_level):
graph, lib, params = relay.build(mod, args.target, params=params)
if args.dump_frontend:
print(graph)
graph_module = create_graph_module(args, graph, lib, ctx)
set_inputs(graph_module, ctx, inputs, params)
return graph_module
示例3: run_relay_graph
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def run_relay_graph(mod, params, shape_dict, target, ctx):
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod, target=target, params=params)
input_shape = shape_dict["input_1"]
dummy_data = np.random.uniform(size=input_shape, low=0, high=input_shape[1]).astype(
"int32"
)
m = graph_runtime.create(graph, lib, ctx)
m.set_input(0, dummy_data)
m.set_input(**params)
m.run()
tvm_output = m.get_output(0)
ftimer = m.module.time_evaluator("run", ctx, repeat=5, number=5)
prof_res = np.array(ftimer().results) * 1000
print(
"%-20s %-19s (%s)"
% ("Runtime:", "%.2f ms" % np.mean(prof_res), "%.2f ms" % np.std(prof_res))
)
return tvm_output
示例4: test_compile_and_run
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def test_compile_and_run():
ctx=tvm.cpu()
target="llvm"
tol=1e-3
with relay.build_config(opt_level=3):
json, lib, params = relay.build(_create_graph_annotated(), target=target)
m = tvm.contrib.graph_runtime.create(json, lib, ctx)
shape = (10, 10)
x_data = np.random.rand(*shape).astype('float32')
y_data = np.random.rand(*shape).astype('float32')
m.set_input("x", x_data)
m.set_input("y", y_data)
m.set_input(**params)
m.run()
out = tvm.nd.empty(shape, ctx=ctx)
out = m.get_output(0, out)
expected = (y_data * y_data) - (x_data + x_data)
tvm.testing.assert_allclose(out.asnumpy(), expected, rtol=tol, atol=tol)
示例5: tune_and_evaluate
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def tune_and_evaluate(tuning_opt, number, tune=True):
op, params, data_shape = get_workload(batch_size, image_shape, out_channel, kernel_size, strides, padding)
tasks = autotvm.task.extract_from_program(op, target=target, params=params, ops=(relay.op.nn.conv2d,))
log_file = tuning_opt["log_filename"]
if tune:
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
if not os.path.exists(log_file):
raise RuntimeError("the log file {} doesn't exists".format(log_file))
with autotvm.apply_history_best(log_file):
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(op, target=target, params=params)
ctx = tvm.context(str(target), 0)
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input("data", data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=1, repeat=number)
prof_res = np.array(ftimer().results) * 1e3
print("Time cost is: ", np.mean(prof_res))
示例6: tune_and_evaluate
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def tune_and_evaluate(tuning_opt, number, tune=True):
op, params, data_shape = get_workload(batch_size, image_shape, out_channel, kernel_size, strides, padding)
print(tvm.autotvm.task.task.TASK_TABLE)
tasks = autotvm.task.extract_from_program(op, target=target, params=params, ops=(relay.op.nn.dense,))
log_file = tuning_opt["log_filename"]
if tune:
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
if not os.path.exists(log_file):
raise RuntimeError("the log file {} doesn't exists".format(log_file))
with autotvm.apply_history_best(log_file):
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(op, target=target, params=params)
ctx = tvm.cpu(np.random.randint(0, 20))
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input("data", data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=number, repeat=1)
prof_res = np.array(ftimer().results) * 1e3
cost = np.mean(prof_res)
print("Time cost is: ", cost)
return cost
示例7: tune_and_evaluate
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def tune_and_evaluate(tuning_opt, number, tune=True):
op, params, data_shape = get_workload(batch_size, image_shape, out_channel, kernel_size, strides, padding)
tasks = autotvm.task.extract_from_program(op, target=target, params=params, ops=(relay.op.nn.conv2d,))
log_file = tuning_opt["log_filename"]
if tune:
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
if not os.path.exists(log_file):
raise RuntimeError("the log file {} doesn't exists".format(log_file))
with autotvm.apply_history_best(log_file) as f:
print(f.best_by_targetkey)
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(op, target=target, params=params)
ctx = tvm.cpu(np.random.randint(0, 8))
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input("data", data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=number, repeat=1)
prof_res = np.array(ftimer().results) * 1e3
cost = np.mean(prof_res)
print("Time cost is: ", cost)
return cost
示例8: tune_and_evaluate
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def tune_and_evaluate(tuning_opt, number, tune=True):
op, params, data_shape = get_workload(batch_size, image_shape, out_channel, kernel_size, strides, padding)
tasks = autotvm.task.extract_from_program(op, target=target, params=params, ops=(relay.op.nn.conv2d,))
log_file = tuning_opt["log_filename"]
if tune:
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
if not os.path.exists(log_file):
raise RuntimeError("the log file {} doesn't exists".format(log_file))
with autotvm.apply_history_best(log_file) as f:
print(f.best_by_targetkey)
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(op, target=target, params=params)
ctx = tvm.cpu(np.random.randint(0, 20))
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input("data", data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=number, repeat=1)
prof_res = np.array(ftimer().results) * 1e3
cost = np.mean(prof_res)
print("Time cost is: ", cost)
return cost
示例9: tune_and_evaluate
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def tune_and_evaluate(tuning_opt):
# extract workloads from relay program
print("Extract tasks...")
net, params, input_shape, out_shape = get_network(network, batch_size=1)
tasks = autotvm.task.extract_from_program(net, target=target,
params=params, ops=(relay.op.nn.conv2d,))
# run tuning tasks
print("Tuning...")
tune_tasks(tasks, **tuning_opt)
# compile kernels with history best records
with autotvm.apply_history_best(log_file):
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(
net, target=target, params=params)
# export library
tmp = tempdir()
filename = "net.tar"
lib.export_library(tmp.relpath(filename))
# load parameters
ctx = tvm.context(str(target), 0)
module = runtime.create(graph, lib, ctx)
data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))
module.set_input('data', data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=1, repeat=600)
prof_res = np.array(ftimer().results) * 1000 # convert to millisecond
print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
(np.mean(prof_res), np.std(prof_res)))
# We do not run the tuning in our webpage server since it takes too long.
# Uncomment the following line to run it by yourself.
示例10: benchmark_tvm_v1
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def benchmark_tvm_v1(net, input_shape=(1, 3, 224, 224)):
inputs = torch.rand(*input_shape).float()
with torch2trt.core.tvm_network():
trace, graph_pth = torch2trt.core.torch2tvm(
net,
inputs,
verbose=True)
outputs = graph_pth.get_resolved_outputs()
tvm_weight_dict = graph_pth.context.tvm_weight_dict
params = {k.name_hint: v for k, v in tvm_weight_dict.items()}
func = expr.Function(analysis.free_vars(outputs), outputs)
target = 'cuda -libs=cudnn'
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(func, target, params=params)
ctx = TVMInferenceContext(graph, lib, params, tvm.gpu(0), ["x"])
times = []
ctx.inference_async(inputs.numpy())
for i in range(100):
torch.cuda.synchronize()
t = time.time()
ctx.execute_async() # use this to avoid htod and dtoh overhead.
torch.cuda.synchronize()
times.append(time.time() - t)
print("tvm time:", np.mean(times[2:]))
示例11: __init__
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def __init__(self, mod, params, ctx=None, input_names=None, cudnn=False, opt_level=3):
target = "cuda"
if cudnn:
target += " -libs=cudnn"
# target = 'llvm -mcpu=core-avx2'
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)
self.graph = graph
self.lib = lib
self.ctx = ctx or tvm.gpu(0)
# self.ctx = ctx or tvm.cpu()
self.tvm_context = graph_runtime.create(graph, lib, self.ctx)
self.params = params
self.tvm_context.set_input(**params)
self.input_names = input_names
示例12: build_config
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def build_config(opt_level=2,
required_pass=None,
disabled_pass=None,
trace=None):
"""Configure the build behavior by setting config variables. This function
will be deprecated in TVM v0.7. Instead, we should directly use
tvm.transform.PassContext.
Parameters
----------
opt_level: int, optional
Optimization level. The optimization pass name and level are as the
following:
.. code-block:: python
OPT_PASS_LEVEL = {
"SimplifyInference": 0,
"OpFusion": 1,
"FoldConstant": 2,
"FoldScaleAxis": 3,
"AlterOpLayout": 3,
"CanonicalizeOps": 3,
"CanonicalizeCast": 3,
"EliminateCommonSubexpr": 3,
"CombineParallelConv2D": 4,
"CombineParallelDense": 4,
"CombineParallelBatchMatmul": 4,
"FastMath": 4
}
required_pass: set of str, optional
Optimization passes that are required regardless of optimization level.
disabled_pass: set of str, optional
Optimization passes to be disabled during optimization.
trace: Callable[[IRModule, PassInfo, bool], None]
A tracing function for debugging or introspection.
Returns
-------
pass_context: PassContext
The pass context for optimizations.
"""
warnings.warn("relay.build_config will be deprecated. Please use \
tvm.transform.PassContext directly", DeprecationWarning)
return tvm.transform.PassContext(opt_level, required_pass, disabled_pass, trace)
示例13: test_alter_layout_strided_slice
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import build_config [as 別名]
def test_alter_layout_strided_slice():
"""Test rewriting strided_slice during alter_iop_layout"""
def before():
x = relay.var("x", shape=(1, 32, 28, 28))
weight = relay.var('weight', shape=(32, 32, 3, 3))
y = relay.nn.conv2d(x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1))
y = relay.strided_slice(y,
begin=relay.const([0, 16], "int32"),
end=relay.const([1, 33], "int32"),
strides=relay.const([1, 1], "int32"))
y = relay.Function(analysis.free_vars(y), y)
return y
def alter_conv2d(attrs, inputs, tinfos, out_type):
data, weight = inputs
new_attrs = dict(attrs)
new_attrs['data_layout'] = 'NCHW4c'
return relay.nn.conv2d(data, weight, **new_attrs)
def expected():
x = relay.var("x", shape=(1, 32, 28, 28))
weight = relay.var("weight", shape=(32, 32, 3, 3))
weight = relay.layout_transform(weight, "OIHW", "OIHW4i4o")
x = relay.layout_transform(x, "NCHW", "NCHW4c")
y = relay.op.nn.contrib_conv2d_nchwc(x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1),
data_layout="NCHW4c")
y = relay.strided_slice(y,
begin=relay.const([0, 4], "int32"),
end=relay.const([1, 21], "int32"),
strides=relay.const([1, 1], "int32"))
y = relay.layout_transform(y, "NCHW4c", "NCHW")
y = relay.Function(analysis.free_vars(y), y)
return y
with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d):
a = before()
b = run_opt_pass(expected(), transform.InferType())
# Verify inference result
mod_before = tvm.IRModule()
mod_new = tvm.IRModule()
mod_before['main'] = a
mod_new['main'] = b
with relay.build_config(opt_level=3):
for target, ctx in ctx_list():
for kind in ["graph", "debug", "vm"]:
ex_before = relay.create_executor(kind, mod=mod_before, ctx=ctx, target=target)
ex_new = relay.create_executor(kind, mod=mod_new, ctx=ctx, target=target)
np_data = np.random.uniform(size=(1, 32, 28, 28)).astype("float32")
np_weight = np.random.uniform(size=(32, 32, 3, 3)).astype("float32")
result_before = ex_before.evaluate()(np_data, np_weight)
result_new = ex_new.evaluate()(np_data, np_weight)
tvm.testing.assert_allclose(result_before.asnumpy(), result_new.asnumpy(), rtol=1e-5, atol=1e-5)