本文整理匯總了Python中tvm.relay.TensorType方法的典型用法代碼示例。如果您正苦於以下問題:Python relay.TensorType方法的具體用法?Python relay.TensorType怎麽用?Python relay.TensorType使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tvm.relay
的用法示例。
在下文中一共展示了relay.TensorType方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_tuple_type_alpha_equal
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_tuple_type_alpha_equal():
t1 = relay.TensorType((1, 2, 3), "float32")
t2 = relay.TensorType((1, 2, 3, 4), "float32")
tp1 = relay.TypeParam("v1", relay.Kind.Type)
tp2 = relay.TypeParam("v2", relay.Kind.Type)
tup1 = relay.TupleType(tvm.convert([t1, t2, tp1]))
tup2 = relay.TupleType(tvm.convert([t1, t2, tp1]))
tup3 = relay.TupleType(tvm.convert([t2, t1, tp1]))
tup4 = relay.TupleType(tvm.convert([t1, t2, tp2]))
# as long as types are alpha-equal and in same order,
# tuples should be alpha-equal
assert tup1 == tup2
assert tup1 != tup3
assert tup1 != tup4
示例2: test_cmp_type
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_cmp_type():
for op in (relay.greater,
relay.greater_equal,
relay.less,
relay.less_equal,
relay.equal,
relay.not_equal):
ib = relay.ir_builder.IRBuilder()
x = ib.param("x", relay.TensorType((10, 4), "float32"))
y = ib.param("y", relay.TensorType((5, 10, 1), "float32"))
with ib.function(x, y) as func:
ib.ret(op(x.var, y.var))
ib.ret(func)
func = relay.ir_pass.infer_type(ib.env, func.to_func())
ftype = func.checked_type
assert ftype.ret_type == relay.TensorType((5, 10, 4), "uint1")
示例3: __init__
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def __init__(self):
self.a = relay.Var("a")
self.b = relay.Var("b")
self.c = relay.Var("c")
self.d = relay.Var("d")
self.e = relay.Var("e")
self.x = relay.Var("x")
self.y = relay.Var("y")
self.z = relay.Var("z")
self.shape = tvm.convert([1, 2, 3])
self.tt = relay.TensorType(self.shape, "float32")
self.int32 = relay.TensorType([], "int32")
self.float32 = relay.TensorType([], "float32")
self.one = convert(1.0)
self.two = convert(2.0)
self.three = convert(3.0)
示例4: test_func_kind
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_func_kind():
# only contain type kinds
tp1 = relay.TypeParam('tp1', relay.Kind.Type)
tp2 = relay.TypeParam('tp2', relay.Kind.Type)
shape = tvm.convert([1, 2, 3])
dtype = 'float32'
tensor_type = relay.TensorType(shape, dtype)
tr = relay.TypeRelation(None, tvm.convert([tensor_type, tp1]) , 1, None)
type_params = tvm.convert([tp1, tp2])
type_constraints = tvm.convert([tr])
arg_types = tvm.convert([tp1, tensor_type])
ret_type = relay.TupleType(tvm.convert([tp2, tensor_type]))
tf = relay.FuncType(arg_types, ret_type, type_params, type_constraints)
assert check_kind(tf)
示例5: example
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def example():
shape = (1, 64, 54, 54)
c_data = np.empty(shape).astype("float32")
c = relay.const(c_data)
weight = relay.var('weight', shape=(64, 64, 3, 3))
x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
conv = relay.nn.conv2d(x, weight)
y = relay.add(c, c)
y = relay.multiply(y, relay.const(2, "float32"))
y = relay.add(conv, y)
z = relay.add(y, c)
z1 = relay.add(y, c)
z2 = relay.add(z, z1)
return relay.Function([x], z2)
###############################################################################
# Let us register layout alteration for a conv2d op so that we can apply the
# layout alteration pass on the example. How alter layout pass works is out
# the scope of this tutorial.
示例6: test_nested_sessions
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_nested_sessions():
"""Test entering and exiting nested session contexts."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"
# Construct Relay add program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
ret = relay.add(x, relay.const(1.0))
add_const_func = relay.Function([x], ret)
sess_a = micro.Session(DEV_CONFIG_A)
sess_b = micro.Session(DEV_CONFIG_B)
with sess_a:
np_tensor_a = np.random.uniform(size=shape).astype(dtype)
micro_tensor_a = tvm.nd.array(np_tensor_a, tvm.micro_dev(0))
with sess_b:
np_tensor_b = np.random.uniform(size=shape).astype(dtype)
micro_tensor_b = tvm.nd.array(np_tensor_b, tvm.micro_dev(0))
add_const_mod = relay_micro_build(add_const_func, DEV_CONFIG_A)
add_const_mod.run(x=micro_tensor_a)
add_result = add_const_mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
add_result, np_tensor_a + 1.0)
示例7: test_graph_runtime
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_graph_runtime():
"""Test a program which uses the graph runtime."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"
# Construct Relay program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
xx = relay.multiply(x, x)
z = relay.add(xx, relay.const(1.0))
func = relay.Function([x], z)
with micro.Session(DEV_CONFIG_A):
mod = relay_micro_build(func, DEV_CONFIG_A)
x_in = np.random.uniform(size=shape[0]).astype(dtype)
mod.run(x=x_in)
result = mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
mod.get_input(0).asnumpy(), x_in)
tvm.testing.assert_allclose(
result, x_in * x_in + 1.0)
示例8: test_upsampling3d_infer_type
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_upsampling3d_infer_type():
n, c, d, h, w = te.size_var("n"), te.size_var("c"),\
te.size_var("d"), te.size_var("h"), te.size_var("w")
scale = tvm.tir.const(2.0, "float64")
x = relay.var("x", relay.TensorType((n, c, d, h, w), "float32"))
y = relay.nn.upsampling3d(x, scale_d=2, scale_h=2, scale_w=2, layout="NCDHW", method="trilinear")
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType((n, c, tvm.tir.Cast("int32", te.round(d*scale)),
tvm.tir.Cast("int32", te.round(h*scale)),
tvm.tir.Cast("int32", te.round(w*scale))),
"float32")
n, c = te.size_var("n"), te.size_var("c")
x = relay.var("x", relay.TensorType((n, c, 100, 100, 200), "float32"))
y = relay.nn.upsampling3d(x, scale_d=2, scale_h=2, scale_w=2, layout="NCDHW", method="trilinear")
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType((n, c, 200, 200, 400), "float32")
示例9: _test_pool2d
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def _test_pool2d(opfunc, reffunc, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)):
n, c, h, w = te.size_var("n"), 10, 224, 224
x = relay.var("x", relay.TensorType((n, c, h, w), "float32"))
y = opfunc(x, pool_size=(1, 1))
assert "pool_size=" in y.astext()
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType((n, 10, 224, 224), "float32")
# test execution
dtype = "float32"
dshape = (1, 3, 28, 28)
x = relay.var("x", shape=dshape)
y = opfunc(x, pool_size=pool_size, strides=strides, padding=padding)
func = relay.Function([x], y)
data = np.random.uniform(size=dshape).astype(dtype)
ref_res = reffunc(data.reshape(1, 3, 14, 2, 14, 2), axis=(3, 5))
for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(data)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)
示例10: _test_pool2d_int
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def _test_pool2d_int(opfunc, reffunc, dtype):
n, c, h, w = te.size_var("n"), 10, 224, 224
x = relay.var("x", relay.TensorType((n, c, h, w), dtype))
y = opfunc(x, pool_size=(1, 1))
assert "pool_size=" in y.astext()
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType((n, 10, 224, 224), dtype)
# test execution
dtype = "int32"
dshape = (1, 3, 28, 28)
x = relay.var("x", shape=dshape, dtype=dtype)
y = opfunc(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
func = relay.Function([x], y)
data = np.random.randint(low=-128, high=128, size=dshape)
ref_res = reffunc(data.reshape(1,3,14,2,14,2), axis=(3,5)).astype(dtype)
for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(data)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)
示例11: _test_global_pool2d
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def _test_global_pool2d(opfunc, reffunc):
n, c, h, w = te.size_var("n"), te.size_var("c"), 224, 224
x = relay.var("x", relay.TensorType((n, h, w, c), "float32"))
y = opfunc(x, layout="NHWC")
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType((n, 1, 1, c), "float32")
n, c, h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), te.size_var("w")
x = relay.var("x", relay.TensorType((n, c, h, w), "float32"))
y = opfunc(x)
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType((n, c, 1, 1), "float32")
# test execution
dtype = "float32"
dshape = (1, 1024, 7, 7)
x = relay.var("x", shape=dshape)
y = opfunc(x)
func = relay.Function([x], y)
data = np.random.uniform(size=dshape).astype(dtype)
ref_res = reffunc(data, axis=(2,3), keepdims=True)
for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(data)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)
示例12: test_tc
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_tc():
"""Simple testcase, check that transformation typechecks."""
mod = tvm.IRModule()
shape = (20, 20)
dtype = 'float32'
t = relay.TensorType(shape, dtype)
x1 = relay.var("x1", t)
x2 = relay.var("x2", t)
# f(x1,x2) = (x1-x2)*x2
y = relay.Function([x1, x2], (x1 - x2) * x2)
mod["main"] = y
mod = transform.LazyGradientInit()(mod)
# function input/output types should remain the same
assert mod["main"].checked_type == relay.FuncType([t, t], t)
示例13: test_add_tuple
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_add_tuple():
"""Add elements of tuple. Check types and semantic equivalence."""
mod = tvm.IRModule()
shape = (10, 10)
dtype = 'float32'
tensor_type = relay.TensorType(shape, dtype)
t = relay.TupleType([tensor_type, tensor_type])
x = relay.var("x", t)
# f((x1,x2)) = x1 + x2
y = relay.Function([x], relay.TupleGetItem(x, 0) + relay.TupleGetItem(x, 1))
mod["main"] = y
mod = transform.LazyGradientInit()(mod)
mod = tvm.transform.PrintIR(show_meta_data=True)(mod)
y = mod["main"]
assert mod["main"].checked_type == relay.FuncType([t], tensor_type)
ex = create_executor(mod=mod)
x = (rand(dtype, *shape), rand(dtype, *shape))
y = ex.evaluate(y)(x)
assert_allclose(y.asnumpy(), x[0].asnumpy() + x[1].asnumpy())
示例14: test_mult
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_mult():
"""Simple multiplication testcase. Check types and semantic equivalence."""
mod = tvm.IRModule()
shape = (15, 15)
dtype = 'float32'
t = relay.TensorType(shape, dtype)
x = relay.var("x", t)
# f(x) = x*x
y = relay.Function([x], x * x)
mod["main"] = y
mod = transform.LazyGradientInit()(mod)
y = mod["main"]
assert mod["main"].checked_type == relay.FuncType([t], t)
ex = create_executor(mod=mod)
x = rand(dtype, *shape)
y = ex.evaluate(y)(x)
assert_allclose(y.asnumpy(), x.asnumpy() * x.asnumpy())
示例15: test_ret_tuple
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_ret_tuple():
"""Test tuple return type. Check types and semantic equivalence."""
mod = tvm.IRModule()
shape = (10, 10)
dtype = 'float32'
t = relay.TensorType(shape, dtype)
x = relay.var("x", t)
# f(x) = (x,x)
func = relay.Function([x], relay.Tuple([x,x * relay.const(2.0)]))
func = run_infer_type(func)
mod["main"] = func
mod = transform.LazyGradientInit()(mod)
func = mod["main"]
assert mod["main"].checked_type == relay.FuncType([t], relay.TupleType([t, t]))
ex = create_executor(mod=mod)
x = rand(dtype, *shape)
y = ex.evaluate(func)(x)
assert_allclose(y[0].asnumpy(), x.asnumpy())
assert_allclose(y[1].asnumpy(), x.asnumpy() * 2.0)