當前位置: 首頁>>代碼示例>>Python>>正文


Python relay.TensorType方法代碼示例

本文整理匯總了Python中tvm.relay.TensorType方法的典型用法代碼示例。如果您正苦於以下問題:Python relay.TensorType方法的具體用法?Python relay.TensorType怎麽用?Python relay.TensorType使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tvm.relay的用法示例。


在下文中一共展示了relay.TensorType方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_tuple_type_alpha_equal

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_tuple_type_alpha_equal():
    t1 = relay.TensorType((1, 2, 3), "float32")
    t2 = relay.TensorType((1, 2, 3, 4), "float32")
    tp1 = relay.TypeParam("v1", relay.Kind.Type)
    tp2 = relay.TypeParam("v2", relay.Kind.Type)

    tup1 = relay.TupleType(tvm.convert([t1, t2, tp1]))
    tup2 = relay.TupleType(tvm.convert([t1, t2, tp1]))
    tup3 = relay.TupleType(tvm.convert([t2, t1, tp1]))
    tup4 = relay.TupleType(tvm.convert([t1, t2, tp2]))

    # as long as types are alpha-equal and in same order,
    # tuples should be alpha-equal
    assert tup1 == tup2
    assert tup1 != tup3
    assert tup1 != tup4 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:18,代碼來源:test_pass_alpha_equal.py

示例2: test_cmp_type

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_cmp_type():
    for op in (relay.greater,
               relay.greater_equal,
               relay.less,
               relay.less_equal,
               relay.equal,
               relay.not_equal):
        ib = relay.ir_builder.IRBuilder()
        x = ib.param("x", relay.TensorType((10, 4), "float32"))
        y = ib.param("y", relay.TensorType((5, 10, 1), "float32"))
        with ib.function(x, y) as func:
            ib.ret(op(x.var, y.var))
        ib.ret(func)
        func = relay.ir_pass.infer_type(ib.env, func.to_func())
        ftype = func.checked_type
        assert ftype.ret_type == relay.TensorType((5, 10, 4), "uint1") 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:18,代碼來源:test_op_level4.py

示例3: __init__

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def __init__(self):
        self.a = relay.Var("a")
        self.b = relay.Var("b")
        self.c = relay.Var("c")
        self.d = relay.Var("d")
        self.e = relay.Var("e")
        self.x = relay.Var("x")
        self.y = relay.Var("y")
        self.z = relay.Var("z")
        self.shape = tvm.convert([1, 2, 3])
        self.tt = relay.TensorType(self.shape, "float32")
        self.int32 = relay.TensorType([], "int32")
        self.float32 = relay.TensorType([], "float32")
        self.one = convert(1.0)
        self.two = convert(2.0)
        self.three = convert(3.0) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:18,代碼來源:test_pass_dead_code_elimination.py

示例4: test_func_kind

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_func_kind():
    # only contain type kinds
    tp1 = relay.TypeParam('tp1', relay.Kind.Type)
    tp2 = relay.TypeParam('tp2', relay.Kind.Type)

    shape = tvm.convert([1, 2, 3])
    dtype = 'float32'
    tensor_type = relay.TensorType(shape, dtype)

    tr = relay.TypeRelation(None, tvm.convert([tensor_type, tp1]) , 1, None)

    type_params = tvm.convert([tp1, tp2])
    type_constraints = tvm.convert([tr])
    arg_types = tvm.convert([tp1, tensor_type])
    ret_type = relay.TupleType(tvm.convert([tp2, tensor_type]))

    tf = relay.FuncType(arg_types, ret_type, type_params, type_constraints)
    assert check_kind(tf) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:20,代碼來源:test_pass_check_kind.py

示例5: example

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def example():
    shape = (1, 64, 54, 54)
    c_data = np.empty(shape).astype("float32")
    c = relay.const(c_data)
    weight = relay.var('weight', shape=(64, 64, 3, 3))
    x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
    conv = relay.nn.conv2d(x, weight)
    y = relay.add(c, c)
    y = relay.multiply(y, relay.const(2, "float32"))
    y = relay.add(conv, y)
    z = relay.add(y, c)
    z1 = relay.add(y, c)
    z2 = relay.add(z, z1)
    return relay.Function([x], z2)

###############################################################################
# Let us register layout alteration for a conv2d op so that we can apply the
# layout alteration pass on the example. How alter layout pass works is out
# the scope of this tutorial. 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:21,代碼來源:relay_pass_infra.py

示例6: test_nested_sessions

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_nested_sessions():
    """Test entering and exiting nested session contexts."""
    if not tvm.runtime.enabled("micro_dev"):
        return
    shape = (1024,)
    dtype = "float32"

    # Construct Relay add program.
    x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
    ret = relay.add(x, relay.const(1.0))
    add_const_func = relay.Function([x], ret)

    sess_a = micro.Session(DEV_CONFIG_A)
    sess_b = micro.Session(DEV_CONFIG_B)
    with sess_a:
        np_tensor_a = np.random.uniform(size=shape).astype(dtype)
        micro_tensor_a = tvm.nd.array(np_tensor_a, tvm.micro_dev(0))
        with sess_b:
            np_tensor_b = np.random.uniform(size=shape).astype(dtype)
            micro_tensor_b = tvm.nd.array(np_tensor_b, tvm.micro_dev(0))
        add_const_mod = relay_micro_build(add_const_func, DEV_CONFIG_A)
        add_const_mod.run(x=micro_tensor_a)
        add_result = add_const_mod.get_output(0).asnumpy()
        tvm.testing.assert_allclose(
                add_result, np_tensor_a + 1.0) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_runtime_micro_on_arm.py

示例7: test_graph_runtime

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_graph_runtime():
    """Test a program which uses the graph runtime."""
    if not tvm.runtime.enabled("micro_dev"):
        return
    shape = (1024,)
    dtype = "float32"

    # Construct Relay program.
    x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
    xx = relay.multiply(x, x)
    z = relay.add(xx, relay.const(1.0))
    func = relay.Function([x], z)

    with micro.Session(DEV_CONFIG_A):
        mod = relay_micro_build(func, DEV_CONFIG_A)

        x_in = np.random.uniform(size=shape[0]).astype(dtype)
        mod.run(x=x_in)
        result = mod.get_output(0).asnumpy()

        tvm.testing.assert_allclose(
                mod.get_input(0).asnumpy(), x_in)
        tvm.testing.assert_allclose(
                result, x_in * x_in + 1.0) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:26,代碼來源:test_runtime_micro.py

示例8: test_upsampling3d_infer_type

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_upsampling3d_infer_type():
    n, c, d, h, w = te.size_var("n"), te.size_var("c"),\
                    te.size_var("d"), te.size_var("h"), te.size_var("w")
    scale = tvm.tir.const(2.0, "float64")
    x = relay.var("x", relay.TensorType((n, c, d, h, w), "float32"))
    y = relay.nn.upsampling3d(x, scale_d=2, scale_h=2, scale_w=2, layout="NCDHW", method="trilinear")

    yy = run_infer_type(y)
    assert yy.checked_type == relay.TensorType((n, c, tvm.tir.Cast("int32", te.round(d*scale)),
                                                tvm.tir.Cast("int32", te.round(h*scale)),
                                                tvm.tir.Cast("int32", te.round(w*scale))),
                                                "float32")
    n, c = te.size_var("n"), te.size_var("c")
    x = relay.var("x", relay.TensorType((n, c, 100, 100, 200), "float32"))
    y = relay.nn.upsampling3d(x, scale_d=2, scale_h=2, scale_w=2, layout="NCDHW", method="trilinear")
    yy = run_infer_type(y)
    assert yy.checked_type == relay.TensorType((n, c, 200, 200, 400), "float32") 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:19,代碼來源:test_op_level2.py

示例9: _test_pool2d

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def _test_pool2d(opfunc, reffunc, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)):
    n, c, h, w = te.size_var("n"), 10, 224, 224
    x = relay.var("x", relay.TensorType((n, c, h, w), "float32"))
    y = opfunc(x, pool_size=(1, 1))
    assert "pool_size=" in y.astext()
    yy = run_infer_type(y)
    assert yy.checked_type == relay.TensorType((n, 10, 224, 224), "float32")
    # test execution
    dtype = "float32"
    dshape = (1, 3, 28, 28)
    x = relay.var("x", shape=dshape)
    y = opfunc(x, pool_size=pool_size, strides=strides, padding=padding)
    func = relay.Function([x], y)
    data = np.random.uniform(size=dshape).astype(dtype)
    ref_res = reffunc(data.reshape(1, 3, 14, 2, 14, 2), axis=(3, 5))
    for target, ctx in ctx_list():
        intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
        op_res1 = intrp1.evaluate(func)(data)
        tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:21,代碼來源:test_op_level2.py

示例10: _test_pool2d_int

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def _test_pool2d_int(opfunc, reffunc, dtype):
    n, c, h, w = te.size_var("n"), 10, 224, 224
    x = relay.var("x", relay.TensorType((n, c, h, w), dtype))
    y = opfunc(x, pool_size=(1, 1))
    assert "pool_size=" in y.astext()
    yy = run_infer_type(y)
    assert yy.checked_type == relay.TensorType((n, 10, 224, 224), dtype)
    # test execution
    dtype = "int32"
    dshape = (1, 3, 28, 28)
    x = relay.var("x", shape=dshape, dtype=dtype)
    y = opfunc(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
    func = relay.Function([x], y)
    data = np.random.randint(low=-128, high=128, size=dshape)
    ref_res = reffunc(data.reshape(1,3,14,2,14,2), axis=(3,5)).astype(dtype)
    for target, ctx in ctx_list():
        intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
        op_res1 = intrp1.evaluate(func)(data)
        tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:21,代碼來源:test_op_level2.py

示例11: _test_global_pool2d

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def _test_global_pool2d(opfunc, reffunc):
    n, c, h, w = te.size_var("n"), te.size_var("c"), 224, 224
    x = relay.var("x", relay.TensorType((n, h, w, c), "float32"))
    y = opfunc(x, layout="NHWC")
    yy = run_infer_type(y)
    assert yy.checked_type == relay.TensorType((n, 1, 1, c), "float32")

    n, c, h, w = te.size_var("n"), te.size_var("c"), te.size_var("h"), te.size_var("w")
    x = relay.var("x", relay.TensorType((n, c, h, w), "float32"))
    y = opfunc(x)
    yy = run_infer_type(y)
    assert yy.checked_type == relay.TensorType((n, c, 1, 1), "float32")
    # test execution
    dtype = "float32"
    dshape = (1, 1024, 7, 7)
    x = relay.var("x", shape=dshape)
    y = opfunc(x)
    func = relay.Function([x], y)
    data = np.random.uniform(size=dshape).astype(dtype)
    ref_res = reffunc(data, axis=(2,3), keepdims=True)
    for target, ctx in ctx_list():
        intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
        op_res1 = intrp1.evaluate(func)(data)
        tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:26,代碼來源:test_op_level2.py

示例12: test_tc

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_tc():
  """Simple testcase, check that transformation typechecks."""
  mod = tvm.IRModule()

  shape = (20, 20)
  dtype = 'float32'
  t = relay.TensorType(shape, dtype)

  x1 = relay.var("x1", t)
  x2 = relay.var("x2", t)
  # f(x1,x2) = (x1-x2)*x2
  y = relay.Function([x1, x2], (x1 - x2) * x2)

  mod["main"] = y
  mod = transform.LazyGradientInit()(mod)

  # function input/output types should remain the same
  assert mod["main"].checked_type == relay.FuncType([t, t], t) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:20,代碼來源:test_pass_lazy_gradient_init.py

示例13: test_add_tuple

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_add_tuple():
  """Add elements of tuple. Check types and semantic equivalence."""
  mod = tvm.IRModule()

  shape = (10, 10)
  dtype = 'float32'
  tensor_type = relay.TensorType(shape, dtype)
  t = relay.TupleType([tensor_type, tensor_type])

  x = relay.var("x", t)
  # f((x1,x2)) = x1 + x2
  y = relay.Function([x], relay.TupleGetItem(x, 0) + relay.TupleGetItem(x, 1))

  mod["main"] = y
  mod = transform.LazyGradientInit()(mod)
  mod = tvm.transform.PrintIR(show_meta_data=True)(mod)
  y = mod["main"]

  assert mod["main"].checked_type == relay.FuncType([t], tensor_type)

  ex = create_executor(mod=mod)
  x = (rand(dtype, *shape), rand(dtype, *shape))
  y = ex.evaluate(y)(x)
  assert_allclose(y.asnumpy(), x[0].asnumpy() + x[1].asnumpy()) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:26,代碼來源:test_pass_lazy_gradient_init.py

示例14: test_mult

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_mult():
  """Simple multiplication testcase. Check types and semantic equivalence."""
  mod = tvm.IRModule()

  shape = (15, 15)
  dtype = 'float32'
  t = relay.TensorType(shape, dtype)

  x = relay.var("x", t)
  # f(x) = x*x
  y = relay.Function([x], x * x)

  mod["main"] = y
  mod = transform.LazyGradientInit()(mod)
  y = mod["main"]

  assert mod["main"].checked_type == relay.FuncType([t], t)

  ex = create_executor(mod=mod)
  x = rand(dtype, *shape)
  y = ex.evaluate(y)(x)
  assert_allclose(y.asnumpy(), x.asnumpy() * x.asnumpy()) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:24,代碼來源:test_pass_lazy_gradient_init.py

示例15: test_ret_tuple

# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import TensorType [as 別名]
def test_ret_tuple():
  """Test tuple return type. Check types and semantic equivalence."""
  mod = tvm.IRModule()

  shape = (10, 10)
  dtype = 'float32'
  t = relay.TensorType(shape, dtype)

  x = relay.var("x", t)
  # f(x) = (x,x)
  func = relay.Function([x], relay.Tuple([x,x * relay.const(2.0)]))
  func = run_infer_type(func)

  mod["main"] = func
  mod = transform.LazyGradientInit()(mod)
  func = mod["main"]

  assert mod["main"].checked_type == relay.FuncType([t], relay.TupleType([t, t]))

  ex = create_executor(mod=mod)
  x = rand(dtype, *shape)
  y = ex.evaluate(func)(x)
  assert_allclose(y[0].asnumpy(), x.asnumpy())
  assert_allclose(y[1].asnumpy(), x.asnumpy() * 2.0) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:26,代碼來源:test_pass_lazy_gradient_init.py


注:本文中的tvm.relay.TensorType方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。