本文整理匯總了Python中tvm.relay.Function方法的典型用法代碼示例。如果您正苦於以下問題:Python relay.Function方法的具體用法?Python relay.Function怎麽用?Python relay.Function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tvm.relay
的用法示例。
在下文中一共展示了relay.Function方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_LeNet
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def get_LeNet(batch_size=batch_size, img_shape=(1, 28, 28), dtype="float32"):
data_shape = (batch_size,) + img_shape
data = relay.var("data", shape=data_shape, dtype=dtype)
conv1_bias = relay.var("conv1_bias")
conv1 = layers.conv2d(data, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), channels=6, name="conv1")
conv1 = relay.nn.bias_add(conv1, conv1_bias)
maxpool1 = relay.nn.max_pool2d(conv1, (2, 2), (2, 2))
conv2_bias = relay.var("conv2_bias")
conv2 = layers.conv2d(maxpool1, kernel_size=(5, 5), strides=(1, 1), padding=(0, 0), channels=16, name="conv2")
conv2 = relay.nn.bias_add(conv2, conv2_bias)
maxpool2 = relay.nn.max_pool2d(conv2, (2, 2), (2, 2))
bf1 = relay.nn.batch_flatten(maxpool2)
dense1 = layers.dense_without_bias(bf1, units=120, name="dense1")
dense2 = layers.dense_without_bias(dense1, units=84, name="dense2")
dense3 = layers.dense_without_bias(dense2, units=10, name="dense3")
softmax = relay.nn.softmax(dense3)
#label is from input
label = relay.var("data2", shape=(batch_size, 10), dtype=dtype)
loss = relay.nn.cross_entropy(softmax, label)
args = relay.analysis.free_vars(loss)
return relay.Function(args, loss)
示例2: test_recursion
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_recursion():
"""
Program:
let f(n: i32, data: f32) -> f32 = {
if (n == 0) {
return data;
} else {
return f(n - 1, log(data));
}
}
f(2, 10000);
"""
f = relay.Var("f")
n = relay.Var("n")
np = relay.Param(n, e.int32)
data = relay.Var("data")
datap = relay.Param(data, e.float32)
funcbody = relay.If(equal(n, convert(0)), data, f(subtract(n, convert(1.0)), log(data)))
value = relay.Function([np, datap], e.float32, funcbody, [])
orig = relay.Let(f, funcbody, f(convert(2.0), convert(10000.0)), e.float32)
assert alpha_equal(dead_code_elimination(orig), orig)
assert alpha_equal(dead_code_elimination(relay.Let(f, funcbody, e.three, e.float32)), e.three)
示例3: example
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def example():
shape = (1, 64, 54, 54)
c_data = np.empty(shape).astype("float32")
c = relay.const(c_data)
weight = relay.var('weight', shape=(64, 64, 3, 3))
x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
conv = relay.nn.conv2d(x, weight)
y = relay.add(c, c)
y = relay.multiply(y, relay.const(2, "float32"))
y = relay.add(conv, y)
z = relay.add(y, c)
z1 = relay.add(y, c)
z2 = relay.add(z, z1)
return relay.Function([x], z2)
###############################################################################
# Let us register layout alteration for a conv2d op so that we can apply the
# layout alteration pass on the example. How alter layout pass works is out
# the scope of this tutorial.
示例4: to_cps
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def to_cps(func, mod=None):
"""
Turn expression into CPS expression.
Every intermediate compute will be passed to a continuation.
Parameters
----------
func: tvm.relay.Function
The input function.
mod: Optional[tvm.IRModule]
The global module.
Returns
-------
result: tvm.relay.Function
The output function.
"""
use_mod = mod if mod is not None else tvm.ir.IRModule()
return _ffi_api.to_cps(func, use_mod)
示例5: un_cps
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def un_cps(func):
"""
Turn an cps function into a Function without the continuation argument.
Note that this will not give the exact same interface as before cps:
If the input/output is higher order, they will still be in cps form.
Parameters
----------
func: tvm.relay.Function
The input function
Returns
-------
result: tvm.relay.Function
The output function
"""
return _ffi_api.un_cps(func)
示例6: test_graph_runtime
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_graph_runtime():
"""Test a program which uses the graph runtime."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"
# Construct Relay program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
xx = relay.multiply(x, x)
z = relay.add(xx, relay.const(1.0))
func = relay.Function([x], z)
with micro.Session(DEV_CONFIG_A):
mod = relay_micro_build(func, DEV_CONFIG_A)
x_in = np.random.uniform(size=shape[0]).astype(dtype)
mod.run(x=x_in)
result = mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
mod.get_input(0).asnumpy(), x_in)
tvm.testing.assert_allclose(
result, x_in * x_in + 1.0)
示例7: test_nested_sessions
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_nested_sessions():
"""Test entering and exiting nested session contexts."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"
# Construct Relay add program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
ret = relay.add(x, relay.const(1.0))
add_const_func = relay.Function([x], ret)
sess_a = micro.Session(DEV_CONFIG_A)
sess_b = micro.Session(DEV_CONFIG_B)
with sess_a:
np_tensor_a = np.random.uniform(size=shape).astype(dtype)
micro_tensor_a = tvm.nd.array(np_tensor_a, tvm.micro_dev(0))
with sess_b:
np_tensor_b = np.random.uniform(size=shape).astype(dtype)
micro_tensor_b = tvm.nd.array(np_tensor_b, tvm.micro_dev(0))
add_const_mod = relay_micro_build(add_const_func, DEV_CONFIG_A)
add_const_mod.run(x=micro_tensor_a)
add_result = add_const_mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
add_result, np_tensor_a + 1.0)
示例8: test_has_multiple_inputs
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_has_multiple_inputs():
data = relay.var("data")
out1 = data * relay.expr.const(3.0)
w0 = relay.var("w0")
out2 = relay.nn.conv2d(data, w0)
out = relay.add(out1, out2)
net = relay.Function(relay.analysis.free_vars(out), out)
net = bind_inputs(net, {"data": (1, 16, 224, 224), "w0": (16, 16, 1, 1)})
target_ops = [relay.op.get("nn.conv2d")]
node_list = []
node_dict = {}
expr2graph(net, target_ops, node_dict, node_list)
input_names = ["data"]
verify_has_multiple_inputs(node_list, 2, input_names, False)
verify_has_multiple_inputs(node_list, 4, input_names, False)
verify_has_multiple_inputs(node_list, 5, input_names, True)
示例9: test_get_direct_ancestor
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_get_direct_ancestor():
data = relay.var("data")
w0 = relay.var("w0")
out1 = relay.nn.conv2d(data, w0)
out2 = relay.add(out1, data * relay.expr.const(5.0))
out3 = out2 + relay.expr.const(2.5)
w1 = relay.var("w1")
out = relay.nn.conv2d(out3, w1)
net = relay.Function(relay.analysis.free_vars(out), out)
net = bind_inputs(net, {"data": (1, 16, 224, 224), "w0": (16, 16, 1, 1), "w1": (16, 16, 1, 1)})
target_ops = [relay.op.get("nn.conv2d")]
node_list = []
node_dict = {}
expr2graph(net, target_ops, node_dict, node_list)
visited_dict = {}
input_names = ["data"]
out = get_direct_ancestor(node_list, visited_dict, target_ops, 5, input_names)
assert out == [0], "Output mismatch: expecting [0] but got %s." % str(out)
示例10: test_get_in_nodes
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_get_in_nodes():
data = relay.var("data")
w0 = relay.var("w0")
out1 = relay.nn.conv2d(data, w0)
out2 = relay.add(out1, data)
out3 = out2 + relay.expr.const(2.5)
w1 = relay.var("w1")
out = relay.nn.conv2d(out3, w1)
net = relay.Function(relay.analysis.free_vars(out), out)
net = bind_inputs(net, {"data": (1, 16, 224, 224), "w0": (16, 16, 1, 1), "w1": (16, 16, 1, 1)})
target_ops = [relay.op.get("nn.conv2d")]
input_names = ["data"]
node_list = []
node_dict = {}
expr2graph(net, target_ops, node_dict, node_list)
out = get_in_nodes(node_list, target_ops, input_names)
expected_out = {3: [0], 4: [3, 0], 7: [4]}
diff_set = set(out) ^ set(expected_out)
if len(diff_set) != 0:
raise RuntimeError("Output mismatch: expecting %s but got %s." % (str(expected_out), str(out)))
示例11: test_tuple_object
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_tuple_object():
x = relay.var(
'x',
type_annotation=relay.ty.TupleType([
relay.ty.TensorType((), 'int32'),
relay.ty.TensorType((), 'int32')
]))
fn = relay.Function([x], relay.expr.TupleGetItem(x, 0))
mod = tvm.IRModule.from_expr(fn)
exe = relay.create_executor(
kind="vm", mod=mod, ctx=nd.cpu(), target="llvm")
f = exe.evaluate()
value_tuple = _container.tuple_object(
[nd.array(np.array(11)),
nd.array(np.array(12))])
# pass an ADT object to evaluate
out = f(value_tuple)
tvm.testing.assert_allclose(out.asnumpy(), np.array(11))
示例12: test_multi_outputs
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_multi_outputs():
xshape = (10, 27)
yshape = (10, 9)
def mx_compose(F, **kwargs):
x = F.sym.Variable("x")
y = F.sym.Variable("y")
z = F.sym.split(x, **kwargs)
return F.sym.broadcast_sub(F.sym.broadcast_add(z[0], z[2]), y)
def relay_compose(F, **kwargs):
x = F.var("x", shape=xshape)
y = F.var("y", shape=yshape)
z = F.split(x, **kwargs)
z = F.subtract(F.add(z[0], z[2]), y)
func = relay.Function(relay.analysis.free_vars(z), z)
return tvm.IRModule.from_expr(func)
mx_sym = mx_compose(mx, num_outputs=3, axis=1)
mod, _ = relay.frontend.from_mxnet(
mx_sym, shape={"x":xshape, "y":yshape})
relay_mod = relay_compose(relay, indices_or_sections=3, axis=1)
compare_graph(mod, relay_mod)
示例13: test_conv3d_transpose_ncdhw_run
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_conv3d_transpose_ncdhw_run():
dshape = (1, 3, 24, 24, 24)
kshape = (3, 4, 2, 2, 2)
x = relay.var("x", shape=dshape)
w = relay.var("w")
y = relay.nn.conv3d_transpose(x, w,
channels=4, kernel_size=(2, 2, 2), strides=(1, 1, 1),
padding=(1, 1, 1))
func = relay.Function([x, w], y)
dtype = "float32"
data = np.random.uniform(size=dshape).astype(dtype)
kernel = np.random.uniform(size=kshape).astype(dtype)
ref_res = topi.testing.conv3d_transpose_ncdhw_python(data, kernel, 1, 1)
for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(data, kernel)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)
示例14: test_conv2d_transpose_nchw_run
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_conv2d_transpose_nchw_run():
dshape = (1, 3, 18, 18)
kshape = (3, 10, 3, 3)
oshape = (1, 10, 36, 36)
x = relay.var("x", shape=dshape)
w = relay.var("w")
y = relay.nn.conv2d_transpose(x, w,
channels=10, kernel_size=(3,3), strides=(2,2),
padding=(1,1), output_padding=(1, 1))
func = relay.Function([x, w], y)
dtype = "float32"
data = np.random.uniform(size=dshape).astype(dtype)
kernel = np.random.uniform(size=kshape).astype(dtype)
ref_res = topi.testing.conv2d_transpose_nchw_python(
data, kernel, 2, 1, (1, 1))
for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(data, kernel)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)
示例15: test_conv2d_transpose_nhwc_run
# 需要導入模塊: from tvm import relay [as 別名]
# 或者: from tvm.relay import Function [as 別名]
def test_conv2d_transpose_nhwc_run():
dshape_nhwc = (1, 18, 18, 3)
kshape_hwoi = (3, 3, 10, 3)
oshape_nhwc = (1, 36, 36, 10)
x = relay.var("x", shape=dshape_nhwc)
w = relay.var("w")
# kshape and kernel_layout should have swapped IO.
# kshape is HWOI and kernel_layout is HWIO
y = relay.nn.conv2d_transpose(x, w,
channels=10, kernel_size=(3, 3), strides=(2, 2),
padding=(1, 1), output_padding=(1, 1),
data_layout="NHWC", kernel_layout="HWIO")
func = relay.Function([x, w], y)
dtype = "float32"
data = np.random.uniform(size=dshape_nhwc).astype(dtype)
kernel = np.random.uniform(size=kshape_hwoi).astype(dtype)
# use true kshape layout here - HWOI
ref_res = topi.testing.conv2d_transpose_nhwc_python(data, kernel, 'HWOI',
2, 1, output_padding=(1, 1))
for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(data, kernel)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)