當前位置: 首頁>>代碼示例>>Python>>正文


Python transformers.PreTrainedTokenizer方法代碼示例

本文整理匯總了Python中transformers.PreTrainedTokenizer方法的典型用法代碼示例。如果您正苦於以下問題:Python transformers.PreTrainedTokenizer方法的具體用法?Python transformers.PreTrainedTokenizer怎麽用?Python transformers.PreTrainedTokenizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在transformers的用法示例。


在下文中一共展示了transformers.PreTrainedTokenizer方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import PreTrainedTokenizer [as 別名]
def __init__(self, lang: str = 'en', n_components: Optional[int] = None,
                 text_columns: List[str] = None, pooling_strategy: str = 'reduce_mean',
                 use_cuda: bool = False, tokenizer: transformers.PreTrainedTokenizer = None,
                 model=None, return_same_type: bool = True, column_format: str = '{col}_{idx}'):
        if tokenizer is not None:
            assert model is not None
            self.tokenizer = tokenizer
            self.model = model
        if lang == 'en':
            self.tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')
            self.model = transformers.BertModel.from_pretrained('bert-base-uncased')
        elif lang == 'jp':
            self.tokenizer = transformers.BertJapaneseTokenizer.from_pretrained('bert-base-japanese-whole-word-masking')
            self.model = transformers.BertModel.from_pretrained('bert-base-japanese-whole-word-masking')
        else:
            raise ValueError('Specified language type () is invalid.'.format(lang))

        self.lang = lang
        self.n_components = n_components
        self.text_columns = text_columns
        self.pooling_strategy = pooling_strategy
        self.use_cuda = use_cuda
        self.return_same_type = return_same_type
        self.svd = {}
        self.column_format = column_format 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:27,代碼來源:bert.py

示例2: tokenizer_lowercases

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import PreTrainedTokenizer [as 別名]
def tokenizer_lowercases(tokenizer: PreTrainedTokenizer) -> bool:
        # Huggingface tokenizers have different ways of remembering whether they lowercase or not. Detecting it
        # this way seems like the least brittle way to do it.
        tokenized = tokenizer.tokenize(
            "A"
        )  # Use a single character that won't be cut into word pieces.
        detokenized = " ".join(tokenized)
        return "a" in detokenized 
開發者ID:allenai,項目名稱:allennlp,代碼行數:10,代碼來源:pretrained_transformer_tokenizer.py

示例3: get_tokenizer

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import PreTrainedTokenizer [as 別名]
def get_tokenizer(model_name: str, **kwargs) -> transformers.PreTrainedTokenizer:
    cache_key = (model_name, frozenset(kwargs.items()))

    global _tokenizer_cache
    tokenizer = _tokenizer_cache.get(cache_key, None)
    if tokenizer is None:
        tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, **kwargs)
        _tokenizer_cache[cache_key] = tokenizer
    return tokenizer 
開發者ID:allenai,項目名稱:allennlp,代碼行數:11,代碼來源:cached_transformers.py

示例4: __init__

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import PreTrainedTokenizer [as 別名]
def __init__(self, real_texts: List[str], fake_texts: List[str], tokenizer: PreTrainedTokenizer,
                 max_sequence_length: int = None, min_sequence_length: int = None, epoch_size: int = None,
                 token_dropout: float = None, seed: int = None):
        self.real_texts = real_texts
        self.fake_texts = fake_texts
        self.tokenizer = tokenizer
        self.max_sequence_length = max_sequence_length
        self.min_sequence_length = min_sequence_length
        self.epoch_size = epoch_size
        self.token_dropout = token_dropout
        self.random = np.random.RandomState(seed) 
開發者ID:openai,項目名稱:gpt-2-output-dataset,代碼行數:13,代碼來源:dataset.py

示例5: mask_tokens

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import PreTrainedTokenizer [as 別名]
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """

    if tokenizer.mask_token is None:
        raise ValueError(
            "This tokenizer does not have a mask token which is necessary for masked language modeling."
            "Set 'mlm' to False in args if you want to use this tokenizer."
        )

    labels = inputs.clone()
    # We sample a few tokens in each sequence for masked-LM training
    # (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    ]
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
    if tokenizer._pad_token is not None:
        padding_mask = labels.eq(tokenizer.pad_token_id)
        probability_matrix.masked_fill_(padding_mask, value=0.0)
    masked_indices = torch.bernoulli(probability_matrix).bool()
    labels[~masked_indices] = -100  # We only compute loss on masked tokens

    if args.model_type == "electra" and False:
        # For ELECTRA, we replace all masked input tokens with tokenizer.mask_token
        inputs[masked_indices] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
    else:
        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
        inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

        # 10% of the time, we replace masked input tokens with random word
        indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
        random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
        inputs[indices_random] = random_words[indices_random]

        # The rest of the time (10% of the time) we keep the masked input tokens unchanged
    return inputs, labels 
開發者ID:ThilinaRajapakse,項目名稱:simpletransformers,代碼行數:40,代碼來源:language_modeling_utils.py

示例6: check_tokenizer_from_pretrained

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import PreTrainedTokenizer [as 別名]
def check_tokenizer_from_pretrained(self, tokenizer_class):
        s3_models = list(tokenizer_class.max_model_input_sizes.keys())
        for model_name in s3_models[:1]:
            tokenizer = tokenizer_class.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
            self.assertIsInstance(tokenizer, tokenizer_class)
            self.assertIsInstance(tokenizer, PreTrainedTokenizer)

            for special_tok in tokenizer.all_special_tokens:
                self.assertIsInstance(special_tok, str)
                special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
                self.assertIsInstance(special_tok_id, int) 
開發者ID:bhoov,項目名稱:exbert,代碼行數:14,代碼來源:test_tokenization_utils.py

示例7: __init__

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import PreTrainedTokenizer [as 別名]
def __init__(
        self,
        texts: Iterable[str],
        tokenizer: Union[str, PreTrainedTokenizer],
        max_seq_length: int = None,
        sort: bool = True,
        lazy: bool = False,
    ):
        """
        Args:
            texts (Iterable): Iterable object with text
            tokenizer (str or tokenizer): pre trained
                huggingface tokenizer or model name
            max_seq_length (int): max sequence length to tokenize
            sort (bool): If True then sort all sequences by length
                for efficient padding
            lazy (bool): If True then tokenize and encode sequence
                in __getitem__ method
                else will tokenize in __init__ also
                if set to true sorting is unavialible
        """
        if sort and lazy:
            raise Exception(
                "lazy is set to True so we can't sort"
                " sequences by length.\n"
                "You should set sort=False and lazy=True"
                " if you want to encode text in __get_item__ function"
            )
        if isinstance(tokenizer, str):
            self.tokenizer = AutoTokenizer.from_pretrained(tokenizer)
        elif isinstance(
            tokenizer, transformers.tokenization_utils.PreTrainedTokenizer
        ):
            self.tokenizer = tokenizer
        else:
            raise TypeError(
                "tokenizer argument should be a model name"
                + " or huggingface PreTrainedTokenizer"
            )

        self.max_seq_length = max_seq_length

        self.lazy = lazy

        if lazy:
            self.texts = texts

        if not lazy:
            pbar = tqdm(texts, desc="tokenizing texts")
            self.encoded = [
                self.tokenizer.encode(text, max_length=max_seq_length)
                for text in pbar
            ]
            if sort:
                self.encoded.sort(key=len)

        self.length = len(texts)

        self._getitem_fn = (
            self._getitem_lazy if lazy else self._getitem_encoded
        ) 
開發者ID:catalyst-team,項目名稱:catalyst,代碼行數:63,代碼來源:language_modeling.py


注:本文中的transformers.PreTrainedTokenizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。