當前位置: 首頁>>代碼示例>>Python>>正文


Python transformers.AdamW方法代碼示例

本文整理匯總了Python中transformers.AdamW方法的典型用法代碼示例。如果您正苦於以下問題:Python transformers.AdamW方法的具體用法?Python transformers.AdamW怎麽用?Python transformers.AdamW使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在transformers的用法示例。


在下文中一共展示了transformers.AdamW方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_default_optimizer

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import AdamW [as 別名]
def get_default_optimizer(model, weight_decay, learning_rate, adam_epsilon):
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [
                    p
                    for n, p in model.named_parameters()
                    if not any(nd in n for nd in no_decay)
                ],
                "weight_decay": weight_decay,
            },
            {
                "params": [
                    p
                    for n, p in model.named_parameters()
                    if any(nd in n for nd in no_decay)
                ],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(
            optimizer_grouped_parameters, lr=learning_rate, eps=adam_epsilon
        )
        return optimizer 
開發者ID:microsoft,項目名稱:nlp-recipes,代碼行數:26,代碼來源:common.py

示例2: create_optimizer

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import AdamW [as 別名]
def create_optimizer(args, parameters):
    """
    Creates an adam optimizer.
    """
    optimizer = AdamW(
        lr=args.lr,
        params=parameters,
        weight_decay=0.01)

    return optimizer


# implementation is from DialoGPT repo 
開發者ID:bme-chatbots,項目名稱:dialogue-generation,代碼行數:15,代碼來源:train.py

示例3: get_optimizer

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import AdamW [as 別名]
def get_optimizer(model, lr, weight_decay, model_type='siamese'):
    param_groups = get_optimizer_param_groups(model.head, lr, weight_decay)
    if model_type == 'siamese':
        param_groups += get_optimizer_param_groups(model.transformer, lr / 100, weight_decay)
    elif model_type == 'double':
        param_groups += get_optimizer_param_groups(model.q_transformer, lr / 100, weight_decay)
        param_groups += get_optimizer_param_groups(model.a_transformer, lr / 100, weight_decay)
    return AdamW(param_groups) 
開發者ID:robinniesert,項目名稱:kaggle-google-quest,代碼行數:10,代碼來源:train.py

示例4: test_adam_w

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import AdamW [as 別名]
def test_adam_w(self):
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
        target = torch.tensor([0.4, 0.2, -0.5])
        criterion = torch.nn.MSELoss()
        # No warmup, constant schedule, no gradient clipping
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
        for _ in range(100):
            loss = criterion(w, target)
            loss.backward()
            optimizer.step()
            w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
            w.grad.zero_()
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:15,代碼來源:test_transformers.py

示例5: prepare_for_training

# 需要導入模塊: import transformers [as 別名]
# 或者: from transformers import AdamW [as 別名]
def prepare_for_training(args, model, checkpoint_state_dict, amp):
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)

    if amp:
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
        if checkpoint_state_dict:
            amp.load_state_dict(checkpoint_state_dict['amp'])

    if checkpoint_state_dict:
        optimizer.load_state_dict(checkpoint_state_dict['optimizer'])
        model.load_state_dict(checkpoint_state_dict['model'])

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)

    return model, optimizer 
開發者ID:microsoft,項目名稱:unilm,代碼行數:30,代碼來源:run_seq2seq.py


注:本文中的transformers.AdamW方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。