本文整理匯總了Python中transformer.Transformer方法的典型用法代碼示例。如果您正苦於以下問題:Python transformer.Transformer方法的具體用法?Python transformer.Transformer怎麽用?Python transformer.Transformer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類transformer
的用法示例。
在下文中一共展示了transformer.Transformer方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _load_models
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def _load_models(self, process_id, sess):
"""
Loads models and returns them
"""
logging.debug("Process '%s' - Loading models\n" % (process_id))
import tensorflow as tf
models = []
for i, options in enumerate(self._options):
with tf.compat.v1.variable_scope("model%d" % i) as scope:
if options.model_type == "transformer":
model = TransformerModel(options)
else:
model = rnn_model.RNNModel(options)
saver = model_loader.init_or_restore_variables(
options, sess, ensemble_scope=scope)
models.append(model)
logging.info("NOTE: Length of translations is capped to {}".format(self._options[0].translation_maxlen))
return models
示例2: InvertOrder
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def InvertOrder(order):
if order is None:
return None
# 'order'[i] maps nat_i -> position of nat_i
# Inverse: position -> natural idx. This it the 'true' ordering -- it's how
# heuristic orders are generated + (less crucially) how Transformer works.
nin = len(order)
inv_ordering = [None] * nin
for natural_idx in range(nin):
inv_ordering[order[natural_idx]] = natural_idx
return inv_ordering
示例3: MakeTransformer
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def MakeTransformer(cols_to_train, fixed_ordering, seed=None):
return transformer.Transformer(
num_blocks=args.blocks,
d_model=args.dmodel,
d_ff=args.dff,
num_heads=args.heads,
nin=len(cols_to_train),
input_bins=[c.DistributionSize() for c in cols_to_train],
use_positional_embs=True,
activation=args.transformer_act,
fixed_ordering=fixed_ordering,
column_masking=args.column_masking,
seed=seed,
).to(DEVICE)
示例4: InvertOrder
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def InvertOrder(order):
if order is None:
return None
# 'order'[i] maps nat_i -> position of nat_i
# Inverse: position -> natural idx. This it the "true" ordering -- it's how
# heuristic orders are generated + (less crucially) how Transformer works.
nin = len(order)
inv_ordering = [None] * nin
for natural_idx in range(nin):
inv_ordering[order[natural_idx]] = natural_idx
return inv_ordering
示例5: __init__
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def __init__(self, vocabs, inference_layers, embed_dim, ff_embed_dim, num_heads, token_size, rel_size, dropout):
super(DecodeLayer, self).__init__()
self.inference_core = Transformer(inference_layers, embed_dim, ff_embed_dim, num_heads, dropout, with_external=True)
self.token_generator = TokenGenerator(vocabs, embed_dim, token_size, dropout)
self.dropout = dropout
self.vocabs = vocabs
示例6: __init__
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def __init__(self, vocabs,
word_char_dim, word_dim,
concept_char_dim, concept_dim,
cnn_filters, char2word_dim, char2concept_dim,
rel_dim, rnn_hidden_size, rnn_num_layers,
embed_dim, ff_embed_dim, num_heads, dropout,
snt_layers, graph_layers, inference_layers,
pretrained_file, device):
super(Generator, self).__init__()
self.vocabs = vocabs
self.concept_encoder = TokenEncoder(vocabs['concept'], vocabs['concept_char'],
concept_char_dim, concept_dim, embed_dim,
cnn_filters, char2concept_dim, dropout, pretrained_file)
self.relation_encoder = RelationEncoder(vocabs['relation'], rel_dim, embed_dim, rnn_hidden_size, rnn_num_layers, dropout)
self.token_encoder = TokenEncoder(vocabs['token'], vocabs['token_char'],
word_char_dim, word_dim, embed_dim,
cnn_filters, char2word_dim, dropout, pretrained_file)
self.graph_encoder = GraphTransformer(graph_layers, embed_dim, ff_embed_dim, num_heads, dropout)
self.snt_encoder = Transformer(snt_layers, embed_dim, ff_embed_dim, num_heads, dropout, with_external=True)
self.embed_dim = embed_dim
self.embed_scale = math.sqrt(embed_dim)
self.token_position = SinusoidalPositionalEmbedding(embed_dim, device)
self.concept_depth = nn.Embedding(32, embed_dim)
self.token_embed_layer_norm = nn.LayerNorm(embed_dim)
self.concept_embed_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_mask = SelfAttentionMask(device)
self.decoder = DecodeLayer(vocabs, inference_layers, embed_dim, ff_embed_dim, num_heads, concept_dim, rel_dim, dropout)
self.dropout = dropout
self.probe_generator = nn.Linear(embed_dim, embed_dim)
self.device = device
self.reset_parameters()
示例7: __init__
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def __init__(self, vocabs,
word_char_dim, word_dim,
concept_char_dim, concept_dim,
cnn_filters, char2word_dim, char2concept_dim,
rel_dim, rnn_hidden_size, rnn_num_layers,
embed_dim, ff_embed_dim, num_heads, dropout,
snt_layers, graph_layers, inference_layers,
pretrained_file, device):
super(Generator, self).__init__()
self.vocabs = vocabs
self.concept_encoder = TokenEncoder(vocabs['concept'], vocabs['concept_char'],
concept_char_dim, concept_dim, embed_dim,
cnn_filters, char2concept_dim, dropout, pretrained_file)
self.relation_encoder = RelationEncoder(vocabs['relation'], rel_dim, embed_dim, rnn_hidden_size, rnn_num_layers, dropout)
self.token_encoder = TokenEncoder(vocabs['token'], vocabs['token_char'],
word_char_dim, word_dim, embed_dim,
cnn_filters, char2word_dim, dropout, pretrained_file)
self.graph_encoder = GraphTransformer(graph_layers, embed_dim, ff_embed_dim, num_heads, dropout)
self.snt_encoder = Transformer(snt_layers, embed_dim, ff_embed_dim, num_heads, dropout, with_external=True)
self.embed_dim = embed_dim
self.embed_scale = math.sqrt(embed_dim)
self.token_position = SinusoidalPositionalEmbedding(embed_dim, device)
self.concept_depth = nn.Embedding(256, embed_dim)
self.token_embed_layer_norm = nn.LayerNorm(embed_dim)
self.concept_embed_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_mask = SelfAttentionMask(device)
self.decoder = DecodeLayer(vocabs, inference_layers, embed_dim, ff_embed_dim, num_heads, concept_dim, rel_dim, dropout)
self.dropout = dropout
self.probe_generator = nn.Linear(embed_dim, embed_dim)
self.device = device
self.reset_parameters()
示例8: wrangle
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def wrangle(path, out_path):
"""
An example to show how to use wrangler
:param path: path to input data file
:param out_path: path to store normalized data
"""
spark = SparkSession.builder.getOrCreate()
data = spark.read.csv(path, header=True, encoding='utf-8')
functions = [lowercase, trim]
# hospital cols
columns = data.columns
transformer = Transformer(functions, columns)
data = transformer.transform(data)
cols_info = list()
# hospital cols
for col in data.columns:
cols_info.append(ColNormInfo(col))
normalizer = Normalizer(cols_info)
data = normalizer.normalize(data)
data.toPandas().to_csv(out_path, index=False, header=True)
示例9: Query
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def Query(self, columns, operators, vals):
# Massages queries into natural order.
columns, operators, vals = FillInUnqueriedColumns(
self.table, columns, operators, vals)
# TODO: we can move these attributes to ctor.
ordering = None
if hasattr(self.model, 'orderings'):
ordering = self.model.orderings[0]
orderings = self.model.orderings
elif hasattr(self.model, 'm'):
# MADE.
ordering = self.model.m[-1]
orderings = [self.model.m[-1]]
else:
print('****Warning: defaulting to natural order')
ordering = np.arange(len(columns))
orderings = [ordering]
num_orderings = len(orderings)
# order idx (first/second/... to be sample) -> x_{natural_idx}.
inv_ordering = [None] * len(columns)
for natural_idx in range(len(columns)):
inv_ordering[ordering[natural_idx]] = natural_idx
with torch.no_grad():
inp_buf = self.inp.zero_()
# Fast (?) path.
if num_orderings == 1:
ordering = orderings[0]
self.OnStart()
p = self._sample_n(
self.num_samples,
ordering if isinstance(
self.model, transformer.Transformer) else inv_ordering,
columns,
operators,
vals,
inp=inp_buf)
self.OnEnd()
return np.ceil(p * self.cardinality).astype(dtype=np.int32,
copy=False)
# Num orderings > 1.
ps = []
self.OnStart()
for ordering in orderings:
p_scalar = self._sample_n(self.num_samples // num_orderings,
ordering, columns, operators, vals)
ps.append(p_scalar)
self.OnEnd()
return np.ceil(np.mean(ps) * self.cardinality).astype(
dtype=np.int32, copy=False)
示例10: main
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def main():
# Command line arguments
args = get_args()
# Fix seed for consistent sampling
th.manual_seed(args.seed)
# data
vocab, _, _ = load_data()
# Model
model = Transformer(
args.n_layers,
args.embed_dim,
args.hidden_dim,
args.n_heads,
vocab,
args.dropout
)
if args.cuda:
model = model.cuda()
# Load existing model
model.load_state_dict(th.load(args.model_file, map_location="cpu"))
# Read from file/stdin
if args.input_file is not None:
input_stream = open(args.input_file, "r", encoding="utf-8")
else:
input_stream = sys.stdin
# Write to file/stdout
if args.output_file is not None:
output_stream = open(args.output_file, "w", encoding="utf-8")
# If we're printing to a file, display stats in stdout
input_stream = tqdm(input_stream)
else:
output_stream = sys.stdout
# Translate
try:
for line in input_stream:
in_words = line.strip().split()
out_words = translate_sentence(
model,
in_words,
beam_size=args.beam_size,
search=args.search,
)
print(desegment(out_words), file=output_stream)
output_stream.flush()
except KeyboardInterrupt:
pass
finally:
input_stream.close()
output_stream.close()
示例11: main
# 需要導入模塊: import transformer [as 別名]
# 或者: from transformer import Transformer [as 別名]
def main():
# Command line arguments
args = get_args()
# data
vocab, train_data, valid_data = load_data()
# Model
model = Transformer(
args.n_layers,
args.embed_dim,
args.hidden_dim,
args.n_heads,
vocab,
args.dropout
)
if args.cuda:
model = model.cuda()
# Load existing model
if os.path.isfile(args.model_file) and not args.overwrite_model:
model.load_state_dict(th.load(args.model_file))
# Optimizer
optim = th.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.98))
# Learning rate schedule
lr_schedule = inverse_sqrt_schedule(2000, args.lr)
# Dataloader
train_loader = MTDataLoader(
train_data,
max_bsz=args.samples_per_batch,
max_tokens=args.tokens_per_batch,
shuffle=True
)
valid_loader = MTDataLoader(
valid_data,
max_bsz=args.samples_per_batch,
max_tokens=args.tokens_per_batch,
shuffle=False
)
# Either validate
if args.validate_only:
valid_ppl = evaluate_ppl(model, valid_loader)
print(f"Validation perplexity: {valid_ppl:.2f}")
else:
# Train epochs
best_ppl = 1e12
for epoch in range(1, args.n_epochs+1):
print(f"----- Epoch {epoch} -----")
# Train for one epoch
model.train()
train_epoch(model, optim, train_loader,
lr_schedule, args.clip_grad)
# Check dev ppl
model.eval()
valid_ppl = evaluate_ppl(model, valid_loader)
print(f"Validation perplexity: {valid_ppl:.2f}")
# Early stopping maybe
if valid_ppl < best_ppl:
best_ppl = valid_ppl
print(f"Saving new best model (epoch {epoch} ppl {valid_ppl})")
th.save(model.state_dict(), args.model_file)