當前位置: 首頁>>代碼示例>>Python>>正文


Python tqdm.tqdm_notebook方法代碼示例

本文整理匯總了Python中tqdm.tqdm_notebook方法的典型用法代碼示例。如果您正苦於以下問題:Python tqdm.tqdm_notebook方法的具體用法?Python tqdm.tqdm_notebook怎麽用?Python tqdm.tqdm_notebook使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tqdm的用法示例。


在下文中一共展示了tqdm.tqdm_notebook方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: copy_model_weights

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def copy_model_weights(src_model, dst_model):
    """
    copy weights from the src keras model to the dst keras model via layer names

    Parameters:
        src_model: source keras model to copy from
        dst_model: destination keras model to copy to
    """

    for layer in tqdm(dst_model.layers):
        try:
            wts = src_model.get_layer(layer.name).get_weights()
            layer.set_weights(wts)
        except:
            print('Could not copy weights of %s' % layer.name)
            continue 
開發者ID:adalca,項目名稱:neuron,代碼行數:18,代碼來源:utils.py

示例2: set_representative_sequence

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def set_representative_sequence(self, force_rerun=False):
        """Automatically consolidate loaded sequences (manual, UniProt, or KEGG) and set a single representative sequence.

        Manually set representative sequences override all existing mappings. UniProt mappings override KEGG mappings
        except when KEGG mappings have PDBs associated with them and UniProt doesn't.

        Args:
            force_rerun (bool): Set to True to recheck stored sequences

        """

        # TODO: rethink use of multiple database sources - may lead to inconsistency with genome sources

        successfully_mapped_counter = 0
        for g in tqdm(self.genes):
            repseq = g.protein.set_representative_sequence(force_rerun=force_rerun)

            if repseq:
                if repseq.sequence_file:
                    successfully_mapped_counter += 1

        log.info('{}/{}: number of genes with a representative sequence'.format(len(self.genes_with_a_representative_sequence),
                                                                                len(self.genes)))
        log.info('See the "df_representative_sequences" attribute for a summary dataframe.') 
開發者ID:SBRG,項目名稱:ssbio,代碼行數:26,代碼來源:gempro.py

示例3: pdb_downloader_and_metadata

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def pdb_downloader_and_metadata(self, outdir=None, pdb_file_type=None, force_rerun=False):
        """Download ALL mapped experimental structures to each protein's structures directory.

        Args:
            outdir (str): Path to output directory, if GEM-PRO directories were not set or other output directory is
                desired
            pdb_file_type (str): Type of PDB file to download, if not already set or other format is desired
            force_rerun (bool): If files should be re-downloaded if they already exist

        """

        if not pdb_file_type:
            pdb_file_type = self.pdb_file_type

        counter = 0
        for g in tqdm(self.genes):
            pdbs = g.protein.pdb_downloader_and_metadata(outdir=outdir, pdb_file_type=pdb_file_type, force_rerun=force_rerun)

            if pdbs:
                counter += len(pdbs)

        log.info('Updated PDB metadata dataframe. See the "df_pdb_metadata" attribute for a summary dataframe.')
        log.info('Saved {} structures total'.format(counter)) 
開發者ID:SBRG,項目名稱:ssbio,代碼行數:25,代碼來源:gempro.py

示例4: get_freesasa_annotations

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def get_freesasa_annotations(self, include_hetatms=False, representatives_only=True, force_rerun=False):
        """Run freesasa on structures and store calculations.

        Annotations are stored in the protein structure's chain sequence at:
        ``<chain_prop>.seq_record.letter_annotations['*-freesasa']``

        Args:
            include_hetatms (bool): If HETATMs should be included in calculations. Defaults to ``False``.
            representative_only (bool): If analysis should only be run on the representative structure
            force_rerun (bool): If calculations should be rerun even if an output file exists

        """
        for g in tqdm(self.genes):
            g.protein.get_freesasa_annotations(include_hetatms=include_hetatms,
                                               representative_only=representatives_only,
                                               force_rerun=force_rerun) 
開發者ID:SBRG,項目名稱:ssbio,代碼行數:18,代碼來源:gempro.py

示例5: download_patric_genomes

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def download_patric_genomes(self, ids, force_rerun=False):
        """Download genome files from PATRIC given a list of PATRIC genome IDs and load them as strains.

        Args:
            ids (str, list): PATRIC ID or list of PATRIC IDs
            force_rerun (bool): If genome files should be downloaded again even if they exist

        """
        ids = ssbio.utils.force_list(ids)

        counter = 0
        log.info('Downloading sequences from PATRIC...')
        for patric_id in tqdm(ids):
            f = ssbio.databases.patric.download_coding_sequences(patric_id=patric_id, seqtype='protein',
                                                                 outdir=self.sequences_by_organism_dir,
                                                                 force_rerun=force_rerun)
            if f:
                self.load_strain(patric_id, f)
                counter += 1
                log.debug('{}: downloaded sequence'.format(patric_id))
            else:
                log.warning('{}: unable to download sequence'.format(patric_id))

        log.info('Created {} new strain GEM-PROs, accessible at "strains" attribute'.format(counter)) 
開發者ID:SBRG,項目名稱:ssbio,代碼行數:26,代碼來源:atlas.py

示例6: create_bar

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def create_bar(bar, batch_size, n_iters, n_epochs, drop_last, length):
    """ Create progress bar with desired number of total iterations."""
    if n_iters is not None:
        total = n_iters
    elif n_epochs is None:
        total = sys.maxsize
    elif drop_last:
        total = length // batch_size * n_epochs
    else:
        total = math.ceil(length * n_epochs / batch_size)

    if callable(bar):
        progressbar = bar(total=total)
    elif bar == 'n':
        progressbar = tqdm.tqdm_notebook(total=total)
    else:
        progressbar = tqdm.tqdm(total=total)
    return progressbar 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:20,代碼來源:utils.py

示例7: _memory_process

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def _memory_process(self, df):
        init_memory = df.memory_usage().sum() / 1024 ** 2 / 1024
        print('Original data occupies {} GB memory.'.format(init_memory))
        df_cols = df.columns          
        for col in tqdm_notebook(df_cols):
            try:
                if 'float' in str(df[col].dtypes):
                    max_val = df[col].max()
                    min_val = df[col].min()
                    trans_types = self._get_type(min_val, max_val, 'float')
                    if trans_types is not None:
                        df[col] = df[col].astype(trans_types)
                elif 'int' in str(df[col].dtypes):
                    max_val = df[col].max()
                    min_val = df[col].min()
                    trans_types = self._get_type(min_val, max_val, 'int')
                    if trans_types is not None:
                        df[col] = df[col].astype(trans_types)
            except:
                print(' Can not do any process for column, {}.'.format(col)) 
        afterprocess_memory = df.memory_usage().sum() / 1024 ** 2 / 1024
        print('After processing, the data occupies {} GB memory.'.format(afterprocess_memory))
        return df 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:25,代碼來源:predict_output_usage.py

示例8: on_epoch_begin

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def on_epoch_begin(self, net, dataset_train=None, dataset_valid=None, **kwargs):
        # Assume it is a number until proven otherwise.
        batches_per_epoch = self.batches_per_epoch

        if self.batches_per_epoch == 'auto':
            batches_per_epoch = self._get_batches_per_epoch(
                net, dataset_train, dataset_valid
            )
        elif self.batches_per_epoch == 'count':
            if len(net.history) <= 1:
                # No limit is known until the end of the first epoch.
                batches_per_epoch = None
            else:
                batches_per_epoch = len(net.history[-2, 'batches'])

        if self._use_notebook():
            self.pbar_ = tqdm.tqdm_notebook(total=batches_per_epoch, leave=False)
        else:
            self.pbar_ = tqdm.tqdm(total=batches_per_epoch, leave=False) 
開發者ID:skorch-dev,項目名稱:skorch,代碼行數:21,代碼來源:logging.py

示例9: default_progress

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def default_progress(verbose=None, iftop=False):
    '''
    Returns a progress function that can wrap iterators to print
    progress messages, if verbose is True.
   
    If verbose is False or if iftop is True and there is already
    a top-level tqdm loop being reported, then a quiet non-printing
    identity function is returned.

    verbose can also be set to a spefific progress function rather
    than True, and that function will be used.
    '''
    global default_verbosity
    if verbose is None:
        verbose = default_verbosity
    if not verbose or (iftop and nested_tqdm()) or tqdm is None:
        return lambda x, *args, **kw: x
    if verbose == True:
        return tqdm_notebook if in_notebook() else tqdm_terminal
    return verbose 
開發者ID:CSAILVision,項目名稱:gandissect,代碼行數:22,代碼來源:progress.py

示例10: _get_progress_bar

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def _get_progress_bar(self, progress_bar_type):
        """Construct a tqdm progress bar object, if tqdm is installed."""
        if tqdm is None:
            if progress_bar_type is not None:
                warnings.warn(_NO_TQDM_ERROR, UserWarning, stacklevel=3)
            return None

        description = "Downloading"
        unit = "rows"

        try:
            if progress_bar_type == "tqdm":
                return tqdm.tqdm(desc=description, total=self.total_rows, unit=unit)
            elif progress_bar_type == "tqdm_notebook":
                return tqdm.tqdm_notebook(
                    desc=description, total=self.total_rows, unit=unit
                )
            elif progress_bar_type == "tqdm_gui":
                return tqdm.tqdm_gui(desc=description, total=self.total_rows, unit=unit)
        except (KeyError, TypeError):
            # Protect ourselves from any tqdm errors. In case of
            # unexpected tqdm behavior, just fall back to showing
            # no progress bar.
            warnings.warn(_NO_TQDM_ERROR, UserWarning, stacklevel=3)
        return None 
開發者ID:googleapis,項目名稱:python-bigquery,代碼行數:27,代碼來源:table.py

示例11: build_db

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def build_db(self, kw_path):
        def extract_verb(item):
            for word in item.split(";"):
                if "#v" in word:
                    return word.split("#")[0]

        with open(kw_path) as f:
            for _ in tqdm(range(10211391)):
                line = f.readline()
                e1, r, e2, n2 = line.strip().split("\t")
                if self.rel_set and r not in self.rel_set:
                    continue
                concept_id = e1 + "$" + r + "$" + e2
                verb = extract_verb(e1)
                if verb not in self.verb2triple:
                    self.verb2triple[verb] = []
                self.verb2triple[verb].append(concept_id)

                match_key = tuple([t.split("#")[0] for t in e1.split(";")])
                if match_key not in self.key2triple:
                    self.key2triple[match_key] = []
                self.key2triple[match_key].append(concept_id) 
開發者ID:HKUST-KnowComp,項目名稱:ASER,代碼行數:24,代碼來源:ExternalKG.py

示例12: get_progress_bar

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def get_progress_bar(module='tqdm'):
    """
    TODO: Write proper docstring
    """
    if module in ['tqdm']:
        try:
            from tqdm import tqdm
        except ImportError:
            def tqdm(x, *args, **kwargs):
                return x
        return tqdm
    elif module in ['tqdm_notebook']:
        try:
            from tqdm import tqdm_notebook as tqdm
        except ImportError:
            def tqdm(x, *args, **kwargs):
                return x
        return tqdm 
開發者ID:lscsoft,項目名稱:bilby,代碼行數:20,代碼來源:utils.py

示例13: compute_by_block

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def compute_by_block(dsx):
    """
    
    """
    
    # determine index key for each chunk
    slices = []
    for chunks in dsx.chunks:
        L  = [0,] + list(np.cumsum(chunks))
        slices.append( [slice(a, b) 
                        for a,b in (zip(L[:-1], L[1:]))]  )
    indexes = list(product(*slices))
    
    # allocate memory to receive result
    if isinstance(dsx, xr.DataArray):
        result = xr.zeros_like(dsx).load()
    else:
        result = np.zeros(dsx.shape)
    
    #evaluate each chunk one at a time
    for index in tqdm_notebook(indexes, leave=False):
        block = dsx.__getitem__(index).compute()
        result.__setitem__(index, block)
    
    return result 
開發者ID:COSIMA,項目名稱:cosima-cookbook,代碼行數:27,代碼來源:distributed.py

示例14: bering_strait

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def bering_strait(expts=[]):
    """
    Plot Bering Strait transport.

    Parameters
    ----------
    expts : str or list of str
        Experiment name(s).
    """

    plt.figure(figsize=(12, 6))

    if not isinstance(expts, list):
        expts = [expts]

    for expt in tqdm_notebook(expts, leave=False, desc='experiments'):
        transport = cc.diagnostics.bering_strait(expt)
        transport.plot(label=expt)
        
    IPython.display.clear_output()
    
    plt.title('Bering Strait Transport')
    plt.xlabel('Time')
    plt.ylabel('Transport (Sv)')
    plt.legend(fontsize=10, loc='best') 
開發者ID:COSIMA,項目名稱:cosima-cookbook,代碼行數:27,代碼來源:lineplots.py

示例15: aabw

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm_notebook [as 別名]
def aabw(expts=[]):
    """
    Plot timeseries of AABW transport measured at 55S.

    Parameters
    ----------
    expts : str or list of str
        Experiment name(s).
    """

    plt.figure(figsize=(12, 6))

    if not isinstance(expts, list):
        expts = [expts]

    for expt in tqdm_notebook(expts, leave=False, desc='experiments'):
        psi_aabw = cc.diagnostics.calc_aabw(expt)
        psi_aabw.plot(label=expt)
    
    IPython.display.clear_output()
        
    plt.title('AABW Transport at 40S')
    plt.xlabel('Time')
    plt.ylabel('Transport (Sv)')
    plt.legend(fontsize=10, loc='best') 
開發者ID:COSIMA,項目名稱:cosima-cookbook,代碼行數:27,代碼來源:lineplots.py


注:本文中的tqdm.tqdm_notebook方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。