本文整理匯總了Python中tqdm.tqdm.write方法的典型用法代碼示例。如果您正苦於以下問題:Python tqdm.write方法的具體用法?Python tqdm.write怎麽用?Python tqdm.write使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tqdm.tqdm
的用法示例。
在下文中一共展示了tqdm.write方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def test(model, data_tar, e):
total_loss_test = 0
correct = 0
criterion = nn.CrossEntropyLoss()
with torch.no_grad():
for batch_id, (data, target) in enumerate(data_tar):
data, target = data.view(-1,28 * 28).to(DEVICE),target.to(DEVICE)
model.eval()
ypred, _, _ = model(data, data)
loss = criterion(ypred, target)
pred = ypred.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
total_loss_test += loss.data
accuracy = correct * 100. / len(data_tar.dataset)
res = 'Test: total loss: {:.6f}, correct: [{}/{}], testing accuracy: {:.4f}%'.format(
total_loss_test, correct, len(data_tar.dataset), accuracy
)
tqdm.write(res)
RESULT_TEST.append([e, total_loss_test, accuracy])
log_test.write(res + '\n')
示例2: test
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def test(model, loader, criterion, device, dtype, child):
model.eval()
test_loss = 0
correct1, correct5 = 0, 0
enum_load = enumerate(loader) if child else enumerate(tqdm(loader))
with torch.no_grad():
for batch_idx, (data, target) in enum_load:
data, target = data.to(device=device, dtype=dtype), target.to(device=device)
output = model(data)
test_loss += criterion(output, target).item() # sum up batch loss
corr = correct(output, target, topk=(1, 5))
correct1 += corr[0]
correct5 += corr[1]
test_loss /= len(loader)
if not child:
tqdm.write(
'\nTest set: Average loss: {:.4f}, Top1: {}/{} ({:.2f}%), '
'Top5: {}/{} ({:.2f}%)'.format(test_loss, int(correct1), len(loader.sampler),
100. * correct1 / len(loader.sampler), int(correct5),
len(loader.sampler), 100. * correct5 / len(loader.sampler)))
return test_loss, correct1 / len(loader.sampler), correct5 / len(loader.sampler)
示例3: test
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def test(capsule_net, test_loader, epoch):
capsule_net.eval()
test_loss = 0
correct = 0
for batch_id, (data, target) in enumerate(test_loader):
target = torch.sparse.torch.eye(10).index_select(dim=0, index=target)
data, target = Variable(data), Variable(target)
if USE_CUDA:
data, target = data.cuda(), target.cuda()
output, reconstructions, masked = capsule_net(data)
loss = capsule_net.loss(data, output, target, reconstructions)
test_loss += loss.data[0]
correct += sum(np.argmax(masked.data.cpu().numpy(), 1) ==
np.argmax(target.data.cpu().numpy(), 1))
tqdm.write(
"Epoch: [{}/{}], test accuracy: {:.6f}, loss: {:.6f}".format(epoch, N_EPOCHS, correct / len(test_loader.dataset),
test_loss / len(test_loader)))
示例4: __call__
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def __call__(self, transformer, callback_data, phase, data, idx):
if phase == CallbackPhase.train_pre_:
self.total_iterations = callback_data['config'].attrs['total_iterations']
num_intervals = self.total_iterations // self.frequency
for loss_name in self.interval_loss_comp.output_keys:
callback_data.create_dataset("cost/{}".format(loss_name), (num_intervals,))
callback_data.create_dataset("time/loss", (num_intervals,))
elif phase == CallbackPhase.train_post:
losses = loop_eval(self.dataset, self.interval_loss_comp)
tqdm.write("Training complete. Avg losses: {}".format(losses))
elif phase == CallbackPhase.minibatch_post and ((idx + 1) % self.frequency == 0):
start_loss = default_timer()
interval_idx = idx // self.frequency
losses = loop_eval(self.dataset, self.interval_loss_comp)
for loss_name, loss in losses.items():
callback_data["cost/{}".format(loss_name)][interval_idx] = loss
callback_data["time/loss"][interval_idx] = (default_timer() - start_loss)
tqdm.write("Interval {} Iteration {} complete. Avg losses: {}".format(
interval_idx + 1, idx + 1, losses))
示例5: train_with_dataset
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def train_with_dataset(self,dataset,batch_size,include_action=False,iter=10000,l2_reg=0.01,debug=False):
sess = tf.get_default_session()
for it in tqdm(range(iter),dynamic_ncols=True):
b_x,b_y,x_split,y_split,b_l = dataset.batch(batch_size=batch_size,include_action=include_action)
loss,l2_loss,acc,_ = sess.run([self.loss,self.l2_loss,self.acc,self.update_op],feed_dict={
self.x:b_x,
self.y:b_y,
self.x_split:x_split,
self.y_split:y_split,
self.l:b_l,
self.l2_reg:l2_reg,
})
if debug:
if it % 100 == 0 or it < 10:
tqdm.write(('loss: %f (l2_loss: %f), acc: %f'%(loss,l2_loss,acc)))
示例6: loadFromFile
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def loadFromFile(cls, file_path):
"""
Loads a Merkle-tree from the provided file, the latter being the result
of an export (cf. the *MerkleTree.export()* method)
:param file_path: relative path of the file to load from with
respect to the current working directory
:type file_path: str
:returns: The tree loaded from the provided file
:rtype: MerkleTree
:raises WrongJSONFormat: if the JSON object loaded from within the
provided file is not a Merkle-tree export
"""
with open(file_path, 'r') as __file:
loaded_object = json.load(__file)
try:
header = loaded_object['header']
tree = cls(
hash_type=header['hash_type'],
encoding=header['encoding'],
raw_bytes=header['raw_bytes'],
security=header['security'])
except KeyError:
raise WrongJSONFormat
tqdm.write('\nFile has been loaded')
update = tree.update
for hash in tqdm(loaded_object['hashes'], desc='Retrieving tree...'):
update(digest=hash)
tqdm.write('Tree has been retrieved')
return tree
# Comparison
示例7: test
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def test(model, loader, criterion, device, dtype):
model.eval()
test_loss = 0
correct1, correct5 = 0, 0
for batch_idx, (data, target) in enumerate(tqdm(loader)):
data, target = data.to(device=device, dtype=dtype), target.to(device=device)
with torch.no_grad():
output = model(data)
test_loss += criterion(output, target).item() # sum up batch loss
corr = correct(output, target, topk=(1, 5))
correct1 += corr[0]
correct5 += corr[1]
test_loss /= len(loader)
tqdm.write(
'\nTest set: Average loss: {:.4f}, Top1: {}/{} ({:.2f}%), '
'Top5: {}/{} ({:.2f}%)'.format(test_loss, int(correct1), len(loader.dataset),
100. * correct1 / len(loader.dataset), int(correct5),
len(loader.dataset), 100. * correct5 / len(loader.dataset)))
return test_loss, correct1 / len(loader.dataset), correct5 / len(loader.dataset)
示例8: loadConversations
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def loadConversations(self, dirName):
"""
Args:
dirName (str): folder to load
Return:
array(question, answer): the extracted QA pairs
"""
conversations = []
dirList = self.filesInDir(dirName)
for filepath in tqdm(dirList, "OpenSubtitles data files"):
if filepath.endswith('gz'):
try:
doc = self.getXML(filepath)
conversations.extend(self.genList(doc))
except ValueError:
tqdm.write("Skipping file %s with errors." % filepath)
except:
print("Unexpected error:", sys.exc_info()[0])
raise
return conversations
示例9: calculate_stats
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def calculate_stats(stats, opts):
model_desc = Default_MargiPose_Desc
model = create_model(model_desc)
skeleton = CanonicalSkeletonDesc
loader = create_train_dataloader(
[opts.dataset], model.data_specs, opts.batch_size, opts.examples_per_epoch, False)
loader.dataset.without_image = not opts.with_image
for epoch in range(opts.epochs):
for batch in tqdm(loader, total=len(loader), leave=False, ascii=True):
joints_3d = np.asarray(batch['target'])
stats['root_x'].add_samples(joints_3d[:, skeleton.root_joint_id, 0])
stats['root_y'].add_samples(joints_3d[:, skeleton.root_joint_id, 1])
stats['root_z'].add_samples(joints_3d[:, skeleton.root_joint_id, 2])
stats['lankle_x'].add_samples(joints_3d[:, skeleton.joint_names.index('left_ankle'), 0])
stats['lankle_y'].add_samples(joints_3d[:, skeleton.joint_names.index('left_ankle'), 1])
stats['lankle_z'].add_samples(joints_3d[:, skeleton.joint_names.index('left_ankle'), 2])
if opts.with_image:
image = np.asarray(batch['input'])
stats['red'].add_samples(image[:, 0].ravel())
stats['green'].add_samples(image[:, 1].ravel())
stats['blue'].add_samples(image[:, 2].ravel())
stats['index'].add_samples(np.asarray(batch['index'], dtype=np.float32) / (len(loader.dataset) - 1))
tqdm.write(f'Epoch {epoch + 1:3d}')
tqdm.write(repr(stats))
tqdm.write('Done.')
示例10: gt_roidb
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
if os.path.exists(cache_file):
os.remove(cache_file)
gt_roidb = [self._load_pascal_annotation(index)
for index in self.image_index]
with open(cache_file, 'wb') as fid:
pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
tqdm.write('wrote gt roidb to {}'.format(cache_file))
return gt_roidb
示例11: stream_handler
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def stream_handler(loglevel, is_gui):
""" Add a logging cli handler """
# Don't set stdout to lower than verbose
loglevel = max(loglevel, 15)
log_format = FaceswapFormatter("%(asctime)s %(levelname)-8s %(message)s",
datefmt="%m/%d/%Y %H:%M:%S")
if is_gui:
# tqdm.write inserts extra lines in the GUI, so use standard output as
# it is not needed there.
log_console = logging.StreamHandler(sys.stdout)
else:
log_console = TqdmHandler(sys.stdout)
log_console.setFormatter(log_format)
log_console.setLevel(loglevel)
return log_console
示例12: crash_log
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def crash_log():
""" Write debug_buffer to a crash log on crash """
original_traceback = traceback.format_exc()
path = os.path.dirname(os.path.realpath(sys.argv[0]))
filename = os.path.join(path, datetime.now().strftime("crash_report.%Y.%m.%d.%H%M%S%f.log"))
freeze_log = list(debug_buffer)
try:
from lib.sysinfo import sysinfo # pylint:disable=import-outside-toplevel
except Exception: # pylint:disable=broad-except
sysinfo = ("\n\nThere was an error importing System Information from lib.sysinfo. This is "
"probably a bug which should be fixed:\n{}".format(traceback.format_exc()))
with open(filename, "w") as outfile:
outfile.writelines(freeze_log)
outfile.write(original_traceback)
outfile.write(sysinfo)
return filename
示例13: _check_alignments
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def _check_alignments(self, frame_name):
""" Ensure that we have alignments for the current frame.
If we have no alignments for this image, skip it and output a message.
Parameters
----------
frame_name: str
The name of the frame to check that we have alignments for
Returns
-------
bool
``True`` if we have alignments for this face, otherwise ``False``
"""
have_alignments = self._alignments.frame_exists(frame_name)
if not have_alignments:
tqdm.write("No alignment found for {}, "
"skipping".format(frame_name))
return have_alignments
示例14: download_objects_of_interest
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def download_objects_of_interest(download_list):
def fetch_url(url):
try:
urllib.request.urlretrieve(url, os.path.join(OUTPUT_DIR, url.split("/")[-1]))
return url, None
except Exception as e:
return None, e
start = timer()
results = ThreadPool(20).imap_unordered(fetch_url, download_list)
df_pbar = tqdm(total=len(download_list), position=1, desc="Download %: ")
for url, error in results:
df_pbar.update(1)
if error is None:
pass # TODO: find a way to do tqdm.write() with a refresh
# print("{} fetched in {}s".format(url, timer() - start), end='\r')
else:
pass # TODO: find a way to do tqdm.write() with a refresh
# print("error fetching {}: {}".format(url, error), end='\r')
示例15: colorize_exceptions
# 需要導入模塊: from tqdm import tqdm [as 別名]
# 或者: from tqdm.tqdm import write [as 別名]
def colorize_exceptions() -> None:
"""Colorizes the system stderr ouput using pygments if installed"""
try:
import traceback
from pygments import highlight
from pygments.lexers import get_lexer_by_name
from pygments.formatters import TerminalFormatter
def colorized_excepthook(type_: Type[BaseException],
value: BaseException,
tb: TracebackType) -> None:
tbtext = ''.join(traceback.format_exception(type_, value, tb))
lexer = get_lexer_by_name("pytb", stripall=True)
formatter = TerminalFormatter()
sys.stderr.write(highlight(tbtext, lexer, formatter))
sys.excepthook = colorized_excepthook # type: ignore
except ModuleNotFoundError:
pass