當前位置: 首頁>>代碼示例>>Python>>正文


Python tqdm.tqdm方法代碼示例

本文整理匯總了Python中tqdm.tqdm方法的典型用法代碼示例。如果您正苦於以下問題:Python tqdm.tqdm方法的具體用法?Python tqdm.tqdm怎麽用?Python tqdm.tqdm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tqdm的用法示例。


在下文中一共展示了tqdm.tqdm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def train(self, dataset):
        self.model.train()
        self.optimizer.zero_grad()
        total_loss = 0.0
        indices = torch.randperm(len(dataset), dtype=torch.long, device='cpu')
        for idx in tqdm(range(len(dataset)), desc='Training epoch ' + str(self.epoch + 1) + ''):
            ltree, linput, rtree, rinput, label = dataset[indices[idx]]
            target = utils.map_label_to_target(label, dataset.num_classes)
            linput, rinput = linput.to(self.device), rinput.to(self.device)
            target = target.to(self.device)
            output = self.model(ltree, linput, rtree, rinput)
            loss = self.criterion(output, target)
            total_loss += loss.item()
            loss.backward()
            if idx % self.args.batchsize == 0 and idx > 0:
                self.optimizer.step()
                self.optimizer.zero_grad()
        self.epoch += 1
        return total_loss / len(dataset)

    # helper function for testing 
開發者ID:dasguptar,項目名稱:treelstm.pytorch,代碼行數:23,代碼來源:trainer.py

示例2: encode

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def encode(self, texts, verbose=True):
        texts_tokens = []
        if verbose:
            for text in tqdm(texts, ncols=80, leave=False):
                text = self.nlp(text_standardize(ftfy.fix_text(text)))
                text_tokens = []
                for token in text:
                    text_tokens.extend(
                        [self.encoder.get(t, 0) for t in
                         self.bpe(token.text.lower()).split(' ')])
                texts_tokens.append(text_tokens)
        else:
            for text in texts:
                text = self.nlp(text_standardize(ftfy.fix_text(text)))
                text_tokens = []
                for token in text:
                    text_tokens.extend(
                        [self.encoder.get(t, 0) for t in
                         self.bpe(token.text.lower()).split(' ')])
                texts_tokens.append(text_tokens)
        return texts_tokens 
開發者ID:atcbosselut,項目名稱:comet-commonsense,代碼行數:23,代碼來源:utils.py

示例3: run_test

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def run_test(work_type: FunctionType, job_sets: Sequence, trials: int,
             pool_class: type, worker_count: int) -> Mapping:
    pool = pool_class(worker_count)
    if work_type == 'compute':
        test_func = pool.run_compute_test
    elif work_type == 'network':
        test_func = pool.run_network_test
    else:
        raise Exception("Invalid work type: {}".format(work_type))
    results = map(
        lambda jobs: test_func(jobs, trials, show_progress=True),
        tqdm(job_sets, desc=pool_class.__name__),
    )
    summarized_results = list(map(summarize_test, results))
    pool.destroy_pool()
    return summarized_results 
開發者ID:JohnStarich,項目名稱:python-pool-performance,代碼行數:18,代碼來源:pools.py

示例4: auto_inverse

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def auto_inverse(self, whole_spectrum):
        whole_spectrum = np.copy(whole_spectrum).astype(complex)
        whole_spectrum[whole_spectrum < 1] = 1
        overwrap = self.buffer_size * 2
        height = whole_spectrum.shape[0]
        parallel_dif = (height-overwrap) // self.parallel
        if height < self.parallel*overwrap:
            raise Exception('voice length is too small to use gpu, or parallel number is too big')

        spec = [self.inverse(whole_spectrum[range(i, i+parallel_dif*self.parallel, parallel_dif), :]) for i in tqdm.tqdm(range(parallel_dif+overwrap))]
        spec = spec[overwrap:]
        spec = np.concatenate(spec, axis=1)
        spec = spec.reshape(-1, self.wave_len)

        #Below code don't consider wave_len and wave_dif, I'll fix.
        wave = np.fft.ifft(spec, axis=1).real
        pad = np.zeros((wave.shape[0], 2), dtype=float)
        wave = np.concatenate([wave, pad], axis=1)

        dst = np.zeros((wave.shape[0]+3)*self.wave_dif, dtype=float)
        for i in range(4):
            w = wave[range(i, wave.shape[0], 4),:]
            w = w.reshape(-1)
            dst[i*self.wave_dif:i*self.wave_dif+len(w)] += w
        return dst*0.5 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:27,代碼來源:gla_gpu.py

示例5: _read_file

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def _read_file(path):
        """
        :param path: embed file path
        :return:
        """
        embed_dict = {}
        with open(path, encoding='utf-8') as f:
            lines = f.readlines()
            lines = tqdm.tqdm(lines)
            for line in lines:
                values = line.strip().split(' ')
                if len(values) == 1 or len(values) == 2 or len(values) == 3:
                    continue
                w, v = values[0], values[1:]
                embed_dict[w] = v
        return embed_dict 
開發者ID:bamtercelboo,項目名稱:pytorch_NER_BiLSTM_CNN_CRF,代碼行數:18,代碼來源:Embed.py

示例6: extract_features

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def extract_features(path, model_type):
	if model_type == 'inceptionv3':
		from keras.applications.inception_v3 import preprocess_input
		target_size = (299, 299)
	elif model_type == 'vgg16':
		from keras.applications.vgg16 import preprocess_input
		target_size = (224, 224)
	# Get CNN Model from model.py
	model = CNNModel(model_type)
	features = dict()
	# Extract features from each photo
	for name in tqdm(os.listdir(path)):
		# Loading and resizing image
		filename = path + name
		image = load_img(filename, target_size=target_size)
		# Convert the image pixels to a numpy array
		image = img_to_array(image)
		# Reshape data for the model
		image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
		# Prepare the image for the CNN Model model
		image = preprocess_input(image)
		# Pass image into model to get encoded features
		feature = model.predict(image, verbose=0)
		# Store encoded features for the image
		image_id = name.split('.')[0]
		features[image_id] = feature
	return features 
開發者ID:dabasajay,項目名稱:Image-Caption-Generator,代碼行數:29,代碼來源:preprocessing.py

示例7: test

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def test(self, dataset):
        self.model.eval()
        with torch.no_grad():
            total_loss = 0.0
            predictions = torch.zeros(len(dataset), dtype=torch.float, device='cpu')
            indices = torch.arange(1, dataset.num_classes + 1, dtype=torch.float, device='cpu')
            for idx in tqdm(range(len(dataset)), desc='Testing epoch  ' + str(self.epoch) + ''):
                ltree, linput, rtree, rinput, label = dataset[idx]
                target = utils.map_label_to_target(label, dataset.num_classes)
                linput, rinput = linput.to(self.device), rinput.to(self.device)
                target = target.to(self.device)
                output = self.model(ltree, linput, rtree, rinput)
                loss = self.criterion(output, target)
                total_loss += loss.item()
                output = output.squeeze().to('cpu')
                predictions[idx] = torch.dot(indices, torch.exp(output))
        return total_loss / len(dataset), predictions 
開發者ID:dasguptar,項目名稱:treelstm.pytorch,代碼行數:19,代碼來源:trainer.py

示例8: load_embedding

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def load_embedding(self, f, reset=[]):
        vectors = {}
        for line in tqdm(f.readlines(), desc='Loading embeddings'):
            tokens = line.rstrip('\n').split(' ')
            word = tokens[0].lower() if self.lower else tokens[0]
            if self.include_unseen:
                self.add(word)
            if word in self.tok2idx:
                vectors[word] = [float(x) for x in tokens[1:]]
        dim = len(vectors.values()[0])
        def to_vector(tok):
            if tok in vectors and tok not in reset:
                return vectors[tok]
            elif tok not in vectors:
                return np.random.normal(-0.05, 0.05, size=dim)
            else:
                return [0.0]*dim
        self.embed = mx.nd.array([vectors[tok] if tok in vectors and tok not in reset
                                  else [0.0]*dim for tok in self.idx2tok]) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:dataset.py

示例9: _process_repo_serial

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def _process_repo_serial(git_repo_dir, sqlite_db_file, commits, extraction_settings):
    """ Processes all commits in a given git repository in a serial manner.

    Args:
        git_repo_dir: path to the git repository that is mined
        sqlite_db_file: path (including database name) where the sqlite database will be created
        commits: list of commits that have to be processed
        extraction_settings: settings for the extraction

    Returns:
        sqlite database will be written at specified location
    """

    git_repo = pydriller.GitRepository(git_repo_dir)

    con = sqlite3.connect(sqlite_db_file)

    for commit in tqdm(commits, desc='Serial'):
        args = {'git_repo_dir': git_repo_dir, 'commit_hash': commit.hash, 'extraction_settings': extraction_settings}
        result = _process_commit(args)

        if not result['edits'].empty:
            result['edits'].to_sql('edits', con, if_exists='append', index=False)
        if not result['commit'].empty:
            result['commit'].to_sql('commits', con, if_exists='append', index=False) 
開發者ID:gotec,項目名稱:git2net,代碼行數:27,代碼來源:extraction.py

示例10: convert_images2bmp

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def convert_images2bmp():
    # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s
    for path in ['../coco/images/val2014/', '../coco/images/train2014/']:
        folder = os.sep + Path(path).name
        output = path.replace(folder, folder + 'bmp')
        if os.path.exists(output):
            shutil.rmtree(output)  # delete output folder
        os.makedirs(output)  # make new output folder

        for f in tqdm(glob.glob('%s*.jpg' % path)):
            save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp')
            cv2.imwrite(save_name, cv2.imread(f))

    for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
        with open(label_path, 'r') as file:
            lines = file.read()
        lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace(
            '/Users/glennjocher/PycharmProjects/', '../')
        with open(label_path.replace('5k', '5k_bmp'), 'w') as file:
            file.write(lines) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:22,代碼來源:datasets.py

示例11: crop_images_random

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def crop_images_random(path='../images/', scale=0.50):  # from utils.utils import *; crop_images_random()
    # crops images into random squares up to scale fraction
    # WARNING: overwrites images!
    for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
        img = cv2.imread(file)  # BGR
        if img is not None:
            h, w = img.shape[:2]

            # create random mask
            a = 30  # minimum size (pixels)
            mask_h = random.randint(a, int(max(a, h * scale)))  # mask height
            mask_w = mask_h  # mask width

            # box
            xmin = max(0, random.randint(0, w) - mask_w // 2)
            ymin = max(0, random.randint(0, h) - mask_h // 2)
            xmax = min(w, xmin + mask_w)
            ymax = min(h, ymin + mask_h)

            # apply random color mask
            cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:23,代碼來源:utils.py

示例12: coco_single_class_labels

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
    # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
    if os.path.exists('new/'):
        shutil.rmtree('new/')  # delete output folder
    os.makedirs('new/')  # make new output folder
    os.makedirs('new/labels/')
    os.makedirs('new/images/')
    for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
        with open(file, 'r') as f:
            labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
        i = labels[:, 0] == label_class
        if any(i):
            img_file = file.replace('labels', 'images').replace('txt', 'jpg')
            labels[:, 0] = 0  # reset class to 0
            with open('new/images.txt', 'a') as f:  # add image to dataset list
                f.write(img_file + '\n')
            with open('new/labels/' + Path(file).name, 'a') as f:  # write label
                for l in labels[i]:
                    f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
            shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg'))  # copy images 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:22,代碼來源:utils.py

示例13: input_file_to_training_data

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def input_file_to_training_data(args, input_file, epoch, tokenizer, num_files):
    print(input_file)
    with DocumentDatabase(reduce_memory=args.reduce_memory) as docs:
        with open(input_file) as f:
            doc = []
            for line in tqdm(f, desc="Loading Dataset", unit=" lines"):
                line = line.strip()
                if line == "":
                    docs.add_document(doc)
                    doc = []
                else:
                    tokens = tokenizer.tokenize(line)
                    doc.append(tokens)
            if doc:
                docs.add_document(doc)  # If the last doc didn't end on a newline, make sure it still gets added
        if len(docs) <= 1:
            exit("ERROR: No document breaks were found in the input file! These are necessary to allow the script to "
                    "ensure that random NextSentences are not sampled from the same document. Please add blank lines to "
                    "indicate breaks between documents in your input file. If your dataset does not contain multiple "
                    "documents, blank lines can be inserted at any natural boundary, such as the ends of chapters, "
                    "sections or paragraphs.")

        for i in range(args.epochs_to_generate):
            create_training_file(docs, tokenizer, args, epoch + i * num_files) 
開發者ID:allenai,項目名稱:tpu_pretrain,代碼行數:26,代碼來源:pregenerate_training_data.py

示例14: train

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def train(self):
        """
        Training loop based on the number of episodes
        :return:
        """
        for episode in tqdm(range(self.current_episode, self.config.num_episodes)):
            self.current_episode = episode
            # reset environment
            self.env.reset()
            self.train_one_epoch()
            # The target network has its weights kept frozen most of the time
            if self.current_episode % self.config.target_update == 0:
                self.target_model.load_state_dict(self.policy_model.state_dict())

        self.env.render()
        self.env.close() 
開發者ID:moemen95,項目名稱:Pytorch-Project-Template,代碼行數:18,代碼來源:dqn.py

示例15: test

# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def test():
    data = np.random.randint(0, 1000, size=(N_OBS, N_FEATURE))
    y = np.random.randint(2, size=N_OBS)

    train = data[0:N_OBS // 2]
    ytrain = y[0:N_OBS // 2]
    test = data[N_OBS // 2:]
    ytest = y[N_OBS // 2:]

    learner = ClassificationTree(number_of_features=N_FEATURE)

    for t, x in enumerate(tqdm(train)):
        learner.update(x, ytrain[t])

    correct_num = 0
    for t, x in enumerate(tqdm(test)):
        y_pred = learner.predict(x)
        if y_pred == ytest[t]:
            correct_num += 1

    print(correct_num) 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:23,代碼來源:test_classification_tree.py


注:本文中的tqdm.tqdm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。