本文整理匯總了Python中tqdm.tqdm方法的典型用法代碼示例。如果您正苦於以下問題:Python tqdm.tqdm方法的具體用法?Python tqdm.tqdm怎麽用?Python tqdm.tqdm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tqdm
的用法示例。
在下文中一共展示了tqdm.tqdm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def train(self, dataset):
self.model.train()
self.optimizer.zero_grad()
total_loss = 0.0
indices = torch.randperm(len(dataset), dtype=torch.long, device='cpu')
for idx in tqdm(range(len(dataset)), desc='Training epoch ' + str(self.epoch + 1) + ''):
ltree, linput, rtree, rinput, label = dataset[indices[idx]]
target = utils.map_label_to_target(label, dataset.num_classes)
linput, rinput = linput.to(self.device), rinput.to(self.device)
target = target.to(self.device)
output = self.model(ltree, linput, rtree, rinput)
loss = self.criterion(output, target)
total_loss += loss.item()
loss.backward()
if idx % self.args.batchsize == 0 and idx > 0:
self.optimizer.step()
self.optimizer.zero_grad()
self.epoch += 1
return total_loss / len(dataset)
# helper function for testing
示例2: encode
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def encode(self, texts, verbose=True):
texts_tokens = []
if verbose:
for text in tqdm(texts, ncols=80, leave=False):
text = self.nlp(text_standardize(ftfy.fix_text(text)))
text_tokens = []
for token in text:
text_tokens.extend(
[self.encoder.get(t, 0) for t in
self.bpe(token.text.lower()).split(' ')])
texts_tokens.append(text_tokens)
else:
for text in texts:
text = self.nlp(text_standardize(ftfy.fix_text(text)))
text_tokens = []
for token in text:
text_tokens.extend(
[self.encoder.get(t, 0) for t in
self.bpe(token.text.lower()).split(' ')])
texts_tokens.append(text_tokens)
return texts_tokens
示例3: run_test
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def run_test(work_type: FunctionType, job_sets: Sequence, trials: int,
pool_class: type, worker_count: int) -> Mapping:
pool = pool_class(worker_count)
if work_type == 'compute':
test_func = pool.run_compute_test
elif work_type == 'network':
test_func = pool.run_network_test
else:
raise Exception("Invalid work type: {}".format(work_type))
results = map(
lambda jobs: test_func(jobs, trials, show_progress=True),
tqdm(job_sets, desc=pool_class.__name__),
)
summarized_results = list(map(summarize_test, results))
pool.destroy_pool()
return summarized_results
示例4: auto_inverse
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def auto_inverse(self, whole_spectrum):
whole_spectrum = np.copy(whole_spectrum).astype(complex)
whole_spectrum[whole_spectrum < 1] = 1
overwrap = self.buffer_size * 2
height = whole_spectrum.shape[0]
parallel_dif = (height-overwrap) // self.parallel
if height < self.parallel*overwrap:
raise Exception('voice length is too small to use gpu, or parallel number is too big')
spec = [self.inverse(whole_spectrum[range(i, i+parallel_dif*self.parallel, parallel_dif), :]) for i in tqdm.tqdm(range(parallel_dif+overwrap))]
spec = spec[overwrap:]
spec = np.concatenate(spec, axis=1)
spec = spec.reshape(-1, self.wave_len)
#Below code don't consider wave_len and wave_dif, I'll fix.
wave = np.fft.ifft(spec, axis=1).real
pad = np.zeros((wave.shape[0], 2), dtype=float)
wave = np.concatenate([wave, pad], axis=1)
dst = np.zeros((wave.shape[0]+3)*self.wave_dif, dtype=float)
for i in range(4):
w = wave[range(i, wave.shape[0], 4),:]
w = w.reshape(-1)
dst[i*self.wave_dif:i*self.wave_dif+len(w)] += w
return dst*0.5
示例5: _read_file
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def _read_file(path):
"""
:param path: embed file path
:return:
"""
embed_dict = {}
with open(path, encoding='utf-8') as f:
lines = f.readlines()
lines = tqdm.tqdm(lines)
for line in lines:
values = line.strip().split(' ')
if len(values) == 1 or len(values) == 2 or len(values) == 3:
continue
w, v = values[0], values[1:]
embed_dict[w] = v
return embed_dict
示例6: extract_features
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def extract_features(path, model_type):
if model_type == 'inceptionv3':
from keras.applications.inception_v3 import preprocess_input
target_size = (299, 299)
elif model_type == 'vgg16':
from keras.applications.vgg16 import preprocess_input
target_size = (224, 224)
# Get CNN Model from model.py
model = CNNModel(model_type)
features = dict()
# Extract features from each photo
for name in tqdm(os.listdir(path)):
# Loading and resizing image
filename = path + name
image = load_img(filename, target_size=target_size)
# Convert the image pixels to a numpy array
image = img_to_array(image)
# Reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# Prepare the image for the CNN Model model
image = preprocess_input(image)
# Pass image into model to get encoded features
feature = model.predict(image, verbose=0)
# Store encoded features for the image
image_id = name.split('.')[0]
features[image_id] = feature
return features
示例7: test
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def test(self, dataset):
self.model.eval()
with torch.no_grad():
total_loss = 0.0
predictions = torch.zeros(len(dataset), dtype=torch.float, device='cpu')
indices = torch.arange(1, dataset.num_classes + 1, dtype=torch.float, device='cpu')
for idx in tqdm(range(len(dataset)), desc='Testing epoch ' + str(self.epoch) + ''):
ltree, linput, rtree, rinput, label = dataset[idx]
target = utils.map_label_to_target(label, dataset.num_classes)
linput, rinput = linput.to(self.device), rinput.to(self.device)
target = target.to(self.device)
output = self.model(ltree, linput, rtree, rinput)
loss = self.criterion(output, target)
total_loss += loss.item()
output = output.squeeze().to('cpu')
predictions[idx] = torch.dot(indices, torch.exp(output))
return total_loss / len(dataset), predictions
示例8: load_embedding
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def load_embedding(self, f, reset=[]):
vectors = {}
for line in tqdm(f.readlines(), desc='Loading embeddings'):
tokens = line.rstrip('\n').split(' ')
word = tokens[0].lower() if self.lower else tokens[0]
if self.include_unseen:
self.add(word)
if word in self.tok2idx:
vectors[word] = [float(x) for x in tokens[1:]]
dim = len(vectors.values()[0])
def to_vector(tok):
if tok in vectors and tok not in reset:
return vectors[tok]
elif tok not in vectors:
return np.random.normal(-0.05, 0.05, size=dim)
else:
return [0.0]*dim
self.embed = mx.nd.array([vectors[tok] if tok in vectors and tok not in reset
else [0.0]*dim for tok in self.idx2tok])
示例9: _process_repo_serial
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def _process_repo_serial(git_repo_dir, sqlite_db_file, commits, extraction_settings):
""" Processes all commits in a given git repository in a serial manner.
Args:
git_repo_dir: path to the git repository that is mined
sqlite_db_file: path (including database name) where the sqlite database will be created
commits: list of commits that have to be processed
extraction_settings: settings for the extraction
Returns:
sqlite database will be written at specified location
"""
git_repo = pydriller.GitRepository(git_repo_dir)
con = sqlite3.connect(sqlite_db_file)
for commit in tqdm(commits, desc='Serial'):
args = {'git_repo_dir': git_repo_dir, 'commit_hash': commit.hash, 'extraction_settings': extraction_settings}
result = _process_commit(args)
if not result['edits'].empty:
result['edits'].to_sql('edits', con, if_exists='append', index=False)
if not result['commit'].empty:
result['commit'].to_sql('commits', con, if_exists='append', index=False)
示例10: convert_images2bmp
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def convert_images2bmp():
# cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s
for path in ['../coco/images/val2014/', '../coco/images/train2014/']:
folder = os.sep + Path(path).name
output = path.replace(folder, folder + 'bmp')
if os.path.exists(output):
shutil.rmtree(output) # delete output folder
os.makedirs(output) # make new output folder
for f in tqdm(glob.glob('%s*.jpg' % path)):
save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp')
cv2.imwrite(save_name, cv2.imread(f))
for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
with open(label_path, 'r') as file:
lines = file.read()
lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace(
'/Users/glennjocher/PycharmProjects/', '../')
with open(label_path.replace('5k', '5k_bmp'), 'w') as file:
file.write(lines)
示例11: crop_images_random
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random()
# crops images into random squares up to scale fraction
# WARNING: overwrites images!
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
img = cv2.imread(file) # BGR
if img is not None:
h, w = img.shape[:2]
# create random mask
a = 30 # minimum size (pixels)
mask_h = random.randint(a, int(max(a, h * scale))) # mask height
mask_w = mask_h # mask width
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# apply random color mask
cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
示例12: coco_single_class_labels
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
# Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
if os.path.exists('new/'):
shutil.rmtree('new/') # delete output folder
os.makedirs('new/') # make new output folder
os.makedirs('new/labels/')
os.makedirs('new/images/')
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
with open(file, 'r') as f:
labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
i = labels[:, 0] == label_class
if any(i):
img_file = file.replace('labels', 'images').replace('txt', 'jpg')
labels[:, 0] = 0 # reset class to 0
with open('new/images.txt', 'a') as f: # add image to dataset list
f.write(img_file + '\n')
with open('new/labels/' + Path(file).name, 'a') as f: # write label
for l in labels[i]:
f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
示例13: input_file_to_training_data
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def input_file_to_training_data(args, input_file, epoch, tokenizer, num_files):
print(input_file)
with DocumentDatabase(reduce_memory=args.reduce_memory) as docs:
with open(input_file) as f:
doc = []
for line in tqdm(f, desc="Loading Dataset", unit=" lines"):
line = line.strip()
if line == "":
docs.add_document(doc)
doc = []
else:
tokens = tokenizer.tokenize(line)
doc.append(tokens)
if doc:
docs.add_document(doc) # If the last doc didn't end on a newline, make sure it still gets added
if len(docs) <= 1:
exit("ERROR: No document breaks were found in the input file! These are necessary to allow the script to "
"ensure that random NextSentences are not sampled from the same document. Please add blank lines to "
"indicate breaks between documents in your input file. If your dataset does not contain multiple "
"documents, blank lines can be inserted at any natural boundary, such as the ends of chapters, "
"sections or paragraphs.")
for i in range(args.epochs_to_generate):
create_training_file(docs, tokenizer, args, epoch + i * num_files)
示例14: train
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def train(self):
"""
Training loop based on the number of episodes
:return:
"""
for episode in tqdm(range(self.current_episode, self.config.num_episodes)):
self.current_episode = episode
# reset environment
self.env.reset()
self.train_one_epoch()
# The target network has its weights kept frozen most of the time
if self.current_episode % self.config.target_update == 0:
self.target_model.load_state_dict(self.policy_model.state_dict())
self.env.render()
self.env.close()
示例15: test
# 需要導入模塊: import tqdm [as 別名]
# 或者: from tqdm import tqdm [as 別名]
def test():
data = np.random.randint(0, 1000, size=(N_OBS, N_FEATURE))
y = np.random.randint(2, size=N_OBS)
train = data[0:N_OBS // 2]
ytrain = y[0:N_OBS // 2]
test = data[N_OBS // 2:]
ytest = y[N_OBS // 2:]
learner = ClassificationTree(number_of_features=N_FEATURE)
for t, x in enumerate(tqdm(train)):
learner.update(x, ytrain[t])
correct_num = 0
for t, x in enumerate(tqdm(test)):
y_pred = learner.predict(x)
if y_pred == ytest[t]:
correct_num += 1
print(correct_num)