本文整理匯總了Python中torchvision.utils.save_image方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.save_image方法的具體用法?Python utils.save_image怎麽用?Python utils.save_image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torchvision.utils
的用法示例。
在下文中一共展示了utils.save_image方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: save_image
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def save_image(self, images, save_dir, iname):
img_name = '%s.png' % (iname)
full_path = os.path.join(save_dir, img_name)
if (iname.find('mask') == -1) or (iname.find('foreground') != -1):
img = images.add(1).div(2).mul(255).clamp(0, 255).byte()
ndarr = img.permute(1, 2, 0).data.cpu().numpy()
im = Image.fromarray(ndarr)
im.save(full_path)
else:
img = images.mul(255).clamp(0, 255).byte()
ndarr = img.data.cpu().numpy()
ndarr = np.reshape(ndarr, (ndarr.shape[-1], ndarr.shape[-1], 1))
ndarr = np.repeat(ndarr, 3, axis=2)
im = Image.fromarray(ndarr)
im.save(full_path)
示例2: save_img_results
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def save_img_results(data_img, fake, epoch, image_dir):
num = cfg.VIS_COUNT
fake = fake[0:num]
# data_img is changed to [0,1]
if data_img is not None:
data_img = data_img[0:num]
vutils.save_image(
data_img, '%s/real_samples.png' % image_dir,
normalize=True)
# fake.data is still [-1, 1]
vutils.save_image(
fake.data, '%s/fake_samples_epoch_%03d.png' %
(image_dir, epoch), normalize=True)
else:
vutils.save_image(
fake.data, '%s/lr_fake_samples_epoch_%03d.png' %
(image_dir, epoch), normalize=True)
示例3: generate
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def generate(G, file_name, tags):
'''
Generate fake image.
:param G:
:param file_name:
:param tags:
:return: img's tensor and file path.
'''
# g_noise = Variable(torch.FloatTensor(1, 128)).to(device).data.normal_(.0, 1)
# g_tag = Variable(torch.FloatTensor([utils.get_one_hot(tags)])).to(device)
g_noise, g_tag = utils.fake_generator(1, 128, device)
img = G(torch.cat([g_noise, g_tag], dim=1))
vutils.save_image(img.data.view(1, 3, 128, 128),
os.path.join(tmp_path, '{}.png'.format(file_name)))
print('Saved file in {}'.format(os.path.join(tmp_path, '{}.png'.format(file_name))))
return img.data.view(1, 3, 128, 128), os.path.join(tmp_path, '{}.png'.format(file_name))
示例4: visualize_inference
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def visualize_inference(opt, real_A, real_B, model, name='inf_test.png'):
size = real_A.size()
real_B = real_B[:opt.num_multi]
# all samples in real_A share the same post_z_B
multi_fake_B = model.inference_multi(real_A.detach(), real_B.detach())
multi_fake_B = multi_fake_B.data.cpu().view(
size[0], opt.num_multi, size[1], size[2], size[3])
vis_multi_image = torch.cat([real_A.data.cpu().unsqueeze(1), multi_fake_B], dim=1) \
.view(size[0]*(opt.num_multi+1),size[1],size[2],size[3])
vis_multi_image = torch.cat([torch.ones(1, size[1], size[2], size[3]).cpu(), real_B.data.cpu(),
vis_multi_image.cpu()], dim=0)
save_path = os.path.join(opt.res_dir, name)
vutils.save_image(vis_multi_image.cpu(), save_path,
normalize=True, range=(-1,1), nrow=opt.num_multi+1)
示例5: visualize_inference
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def visualize_inference(opt, real_A, real_B, model, eidx, uidx):
size = real_A.size()
real_B = real_B[:opt.num_multi]
# all samples in real_A share the same post_z_B
multi_fake_B = model.inference_multi(real_A.detach(), real_B.detach())
multi_fake_B = multi_fake_B.data.cpu().view(
size[0], opt.num_multi, size[1], size[2], size[3])
vis_multi_image = torch.cat([real_A.data.cpu().unsqueeze(1), multi_fake_B], dim=1) \
.view(size[0]*(opt.num_multi+1),size[1],size[2],size[3])
vis_multi_image = torch.cat([torch.ones(1, size[1], size[2], size[3]).cpu(), real_B.data.cpu(),
vis_multi_image.cpu()], dim=0)
save_path = os.path.join(opt.vis_inf, 'inf_%02d_%04d.png' % (eidx, uidx))
vutils.save_image(vis_multi_image.cpu(), save_path,
normalize=True, range=(-1,1), nrow=opt.num_multi+1)
copyfile(save_path, os.path.join(opt.vis_latest, 'inf.png'))
示例6: save_superimages
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def save_superimages(self, images_list, filenames,
save_dir, split_dir, imsize):
batch_size = images_list[0].size(0)
num_sentences = len(images_list)
for i in range(batch_size):
s_tmp = '%s/super/%s/%s' %\
(save_dir, split_dir, filenames[i])
folder = s_tmp[:s_tmp.rfind('/')]
if not os.path.isdir(folder):
print('Make a new folder: ', folder)
mkdir_p(folder)
#
savename = '%s_%d.png' % (s_tmp, imsize)
super_img = []
for j in range(num_sentences):
img = images_list[j][i]
# print(img.size())
img = img.view(1, 3, imsize, imsize)
# print(img.size())
super_img.append(img)
# break
super_img = torch.cat(super_img, 0)
vutils.save_image(super_img, savename, nrow=10, normalize=True)
示例7: ExtractMask
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def ExtractMask(Seg):
# Given segmentation for content and style, we get a list of segmentation for each color
'''
Test Code:
content_masks,style_masks = ExtractMask(contentSegImg,styleSegImg)
for i,mask in enumerate(content_masks):
vutils.save_image(mask,'samples/content_%d.png' % (i),normalize=True)
for i,mask in enumerate(style_masks):
vutils.save_image(mask,'samples/style_%d.png' % (i),normalize=True)
'''
color_codes = ['blue', 'green', 'black', 'white', 'red', 'yellow', 'grey', 'lightblue', 'purple']
masks = []
for color in color_codes:
mask = MaskHelper(Seg,color)
masks.append(mask)
return masks
示例8: visualize
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def visualize(self, iteration):
netG = self.netG
netG.eval()
with torch.no_grad():
y = torch.arange(self.num_columns).repeat(self.num_samples).to(
self.device)
if y.size(0) < self.batch_size:
x = netG(self.fixed_z, y)
else:
xs = []
for i in range(0, y.size(0), self.batch_size):
x = netG(self.fixed_z[i:i + self.batch_size],
y[i:i + self.batch_size])
xs.append(x)
x = torch.cat(xs, dim=0)
utils.save_image(x.detach(),
os.path.join(self.out,
'samples_iter_%d.png' % iteration),
self.num_columns,
0,
normalize=True,
range=self.range)
示例9: test
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def test(dataloader, epoch):
real_cpu_first, _ = iter(dataloader).next()
real_cpu_first = real_cpu_first.mul(0.5).add(0.5) # denormalize
if opt.cuda:
real_cpu_first = real_cpu_first.cuda()
netGx.eval(), netGz.eval() # switch to test mode
latent = netGz(Variable(real_cpu_first, volatile=True))
# removes last sigmoid activation to visualize reconstruction correctly
mu, sigma = latent[:, :opt.nz], latent[:, opt.nz:].exp()
recon = netGx(mu + sigma)
vutils.save_image(recon.data, '{0}/reconstruction.png'.format(opt.experiment))
vutils.save_image(real_cpu_first, '{0}/real_samples.png'.format(opt.experiment))
# MAIN LOOP
示例10: getTemplates
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def getTemplates(opt,N,vis=True,path=str(bMirror)):
x=getImage(opt.contentPath + os.listdir(opt.contentPath)[0], True)
if N ==0:
return x
flow=getCanonic(x)
nTex = len(os.listdir(opt.texturePath))
out = torch.FloatTensor(N,3,x.shape[2],x.shape[3]).half()
files=os.listdir(opt.texturePath)
for n in range(N):
z=getImage(opt.texturePath + files[n % nTex])
out[n:n+1] = randomTile(flow,z)
if vis:
vutils.save_image(out[:8].float(),path+'templates.jpg', normalize=True,nrow=4,padding=10)##limit to 25 the shown templates
return torch.cat([x,flow.permute(0,3,1,2)],1),out
##@param target is always (B,3,H,W). RGB image. The canonical coordinates of the used templates will be added to last 2 channels
##@param template is always (N,3,H,W)
示例11: eval
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def eval(self,
batch_size=None):
self.netG_AB.eval()
self.netG_BA.eval()
self.netD_A.eval()
self.netD_B.eval()
if batch_size is None:
batch_size = self.test_data_loader.batch_size
with torch.no_grad():
for batch_idx, data in enumerate(self.test_data_loader):
_real_A = data['testA'].to(self.device)
_fake_B = self.netG_AB(_real_A)
_real_B = data['testB'].to(self.device)
_fake_A = self.netG_BA(_real_B)
viz_sample = torch.cat((_real_A, _fake_B, _real_B, _fake_A), 0)
vutils.save_image(viz_sample,
'img_{}.png'.format(batch_idx),
nrow=batch_size,
normalize=True)
開發者ID:PacktPublishing,項目名稱:Hands-On-Generative-Adversarial-Networks-with-PyTorch-1.x,代碼行數:22,代碼來源:build_gan.py
示例12: eval
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def eval(self,
batch_size=None):
self.netG.eval()
self.netD.eval()
if batch_size is None:
batch_size = self.data_loader.batch_size
with torch.no_grad():
for batch_idx, data in enumerate(self.data_loader):
image = data['right_images'].to(self.device)[:batch_size]
embed = data['right_embed'].to(self.device)[:batch_size]
text = data['txt'][:batch_size]
noise = torch.randn((image.shape[0], 100, 1, 1), device=self.device)
viz_sample = self.netG(noise, embed)
vutils.save_image(viz_sample,
'img_{}.png'.format(batch_idx),
nrow=batch_size//8,
normalize=True)
for t in text:
print(t)
break
開發者ID:PacktPublishing,項目名稱:Hands-On-Generative-Adversarial-Networks-with-PyTorch-1.x,代碼行數:23,代碼來源:build_gan.py
示例13: plot_samples_per_epoch
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def plot_samples_per_epoch(self, batch, epoch):
"""
Plotting the batch images
:param batch: Tensor of shape (B,C,H,W)
:param epoch: the number of current epoch
:return: img_epoch: which will contain the image of this epoch
"""
img_epoch = '{}samples_epoch_{:d}.png'.format(self.config.out_dir, epoch)
v_utils.save_image(batch,
img_epoch,
nrow=4,
padding=2,
normalize=True)
return imageio.imread(img_epoch)
示例14: plot_samples_per_epoch
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def plot_samples_per_epoch(self, fake_batch, epoch):
"""
Plotting the fake batch
:param fake_batch: Tensor of shape (B,C,H,W)
:param epoch: the number of current epoch
:return: img_epoch: which will contain the image of this epoch
"""
img_epoch = '{}samples_epoch_{:d}.png'.format(self.config.out_dir, epoch)
v_utils.save_image(fake_batch,
img_epoch,
nrow=4,
padding=2,
normalize=True)
return imageio.imread(img_epoch)
示例15: save_current_images
# 需要導入模塊: from torchvision import utils [as 別名]
# 或者: from torchvision.utils import save_image [as 別名]
def save_current_images(self, epoch, reals, fakes, fixed):
""" Save images for epoch i.
Args:
epoch ([int]) : Current epoch
reals ([FloatTensor]): Real Image
fakes ([FloatTensor]): Fake Image
fixed ([FloatTensor]): Fixed Fake Image
"""
vutils.save_image(reals, '%s/reals.png' % self.img_dir, normalize=True)
vutils.save_image(fakes, '%s/fakes.png' % self.img_dir, normalize=True)
vutils.save_image(fixed, '%s/fixed_fakes_%03d.png' %(self.img_dir, epoch+1), normalize=True)