當前位置: 首頁>>代碼示例>>Python>>正文


Python transforms.CenterCrop方法代碼示例

本文整理匯總了Python中torchvision.transforms.transforms.CenterCrop方法的典型用法代碼示例。如果您正苦於以下問題:Python transforms.CenterCrop方法的具體用法?Python transforms.CenterCrop怎麽用?Python transforms.CenterCrop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.transforms.transforms的用法示例。


在下文中一共展示了transforms.CenterCrop方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_transforms

# 需要導入模塊: from torchvision.transforms import transforms [as 別名]
# 或者: from torchvision.transforms.transforms import CenterCrop [as 別名]
def get_transforms(eval=False, aug=None):
    trans = []

    if aug["randcrop"] and not eval:
        trans.append(transforms.RandomCrop(aug["randcrop"]))

    if aug["randcrop"] and eval:
        trans.append(transforms.CenterCrop(aug["randcrop"]))

    if aug["flip"] and not eval:
        trans.append(transforms.RandomHorizontalFlip())

    if aug["grayscale"]:
        trans.append(transforms.Grayscale())
        trans.append(transforms.ToTensor())
        trans.append(transforms.Normalize(mean=aug["bw_mean"], std=aug["bw_std"]))
    elif aug["mean"]:
        trans.append(transforms.ToTensor())
        trans.append(transforms.Normalize(mean=aug["mean"], std=aug["std"]))
    else:
        trans.append(transforms.ToTensor())

    trans = transforms.Compose(trans)
    return trans 
開發者ID:loeweX,項目名稱:Greedy_InfoMax,代碼行數:26,代碼來源:get_dataloader.py

示例2: __init__

# 需要導入模塊: from torchvision.transforms import transforms [as 別名]
# 或者: from torchvision.transforms.transforms import CenterCrop [as 別名]
def __init__(self, size: Union[Tuple[int, int], int]):
        super().__init__()
        self._image_transform = tv.CenterCrop(size) 
開發者ID:torchvideo,項目名稱:torchvideo,代碼行數:5,代碼來源:center_crop_video.py

示例3: handle

# 需要導入模塊: from torchvision.transforms import transforms [as 別名]
# 或者: from torchvision.transforms.transforms import CenterCrop [as 別名]
def handle(self, source, copy_to_local=False, normalize=True,
               split=None, classification_mode=False, **transform_args):
        """

        Args:
            source:
            copy_to_local:
            normalize:
            **transform_args:

        Returns:

        """
        Dataset = self.make_indexing(CelebA)
        data_path = self.get_path(source)

        if copy_to_local:
            data_path = self.copy_to_local_path(data_path)

        if normalize and isinstance(normalize, bool):
            normalize = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]

        if classification_mode:
            train_transform = transforms.Compose([
                transforms.RandomResizedCrop(64),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
            test_transform = transforms.Compose([
                transforms.Resize(64),
                transforms.CenterCrop(64),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
        else:
            train_transform = build_transforms(normalize=normalize,
                                               **transform_args)
            test_transform = train_transform

        if split is None:
            train_set = Dataset(root=data_path, transform=train_transform,
                                download=True)
            test_set = Dataset(root=data_path, transform=test_transform)
        else:
            train_set, test_set = self.make_split(
                data_path, split, Dataset, train_transform, test_transform)
        input_names = ['images', 'labels', 'attributes']

        dim_c, dim_x, dim_y = train_set[0][0].size()
        dim_l = len(train_set.classes)
        dim_a = train_set.attributes[0].shape[0]

        dims = dict(x=dim_x, y=dim_y, c=dim_c, labels=dim_l, attributes=dim_a)
        self.add_dataset('train', train_set)
        self.add_dataset('test', test_set)
        self.set_input_names(input_names)
        self.set_dims(**dims)

        self.set_scale((-1, 1)) 
開發者ID:rdevon,項目名稱:cortex,代碼行數:62,代碼來源:CelebA.py

示例4: _handle_STL

# 需要導入模塊: from torchvision.transforms import transforms [as 別名]
# 或者: from torchvision.transforms.transforms import CenterCrop [as 別名]
def _handle_STL(self, Dataset, data_path, transform=None,
                    labeled_only=False, stl_center_crop=False,
                    stl_resize_only=False, stl_no_resize=False):
        normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

        if stl_no_resize:
            train_transform = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])
        else:
            if stl_center_crop:
                tr_trans = transforms.CenterCrop(64)
                te_trans = transforms.CenterCrop(64)
            elif stl_resize_only:
                tr_trans = transforms.Resize(64)
                te_trans = transforms.Resize(64)
            elif stl_no_resize:
                pass
            else:
                tr_trans = transforms.RandomResizedCrop(64)
                te_trans = transforms.Resize(64)

            train_transform = transforms.Compose([
                tr_trans,
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                te_trans,
                transforms.ToTensor(),
                normalize,
            ])
        if labeled_only:
            split = 'train'
        else:
            split = 'train+unlabeled'
        train_set = Dataset(
            data_path, split=split, transform=train_transform, download=True)
        test_set = Dataset(
            data_path, split='test', transform=test_transform, download=True)
        return train_set, test_set 
開發者ID:rdevon,項目名稱:cortex,代碼行數:50,代碼來源:torchvision_datasets.py


注:本文中的torchvision.transforms.transforms.CenterCrop方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。