當前位置: 首頁>>代碼示例>>Python>>正文


Python functional.resize方法代碼示例

本文整理匯總了Python中torchvision.transforms.functional.resize方法的典型用法代碼示例。如果您正苦於以下問題:Python functional.resize方法的具體用法?Python functional.resize怎麽用?Python functional.resize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.transforms.functional的用法示例。


在下文中一共展示了functional.resize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: resize

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def resize(image, boxes, dims=(300, 300), return_percent_coords=True):
    """
    Resize image. For the SSD300, resize to (300, 300).

    Since percent/fractional coordinates are calculated for the bounding boxes (w.r.t image dimensions) in this process,
    you may choose to retain them.

    :param image: image, a PIL Image
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :return: resized image, updated bounding box coordinates (or fractional coordinates, in which case they remain the same)
    """
    # Resize image
    new_image = FT.resize(image, dims)

    # Resize bounding boxes
    old_dims = torch.FloatTensor([image.width, image.height, image.width, image.height]).unsqueeze(0)
    new_boxes = boxes / old_dims  # percent coordinates

    if not return_percent_coords:
        new_dims = torch.FloatTensor([dims[1], dims[0], dims[1], dims[0]]).unsqueeze(0)
        new_boxes = new_boxes * new_dims

    return new_image, new_boxes 
開發者ID:zzzDavid,項目名稱:ICDAR-2019-SROIE,代碼行數:25,代碼來源:utils.py

示例2: _random_crop

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def _random_crop(self, img_list):
        """Performs random square crop of fixed size.
        Works with list so that all items get the same cropped window (e.g. for buffers).
        """

        w, h = img_list[0].size
        assert w >= self.crop_size and h >= self.crop_size, \
            f'Error: Crop size: {self.crop_size}, Image size: ({w}, {h})'
        cropped_imgs = []
        i = np.random.randint(0, h - self.crop_size + 1)
        j = np.random.randint(0, w - self.crop_size + 1)

        for img in img_list:
            # Resize if dimensions are too small
            if min(w, h) < self.crop_size:
                img = tvF.resize(img, (self.crop_size, self.crop_size))

            # Random crop
            cropped_imgs.append(tvF.crop(img, i, j, self.crop_size, self.crop_size))

        return cropped_imgs 
開發者ID:joeylitalien,項目名稱:noise2noise-pytorch,代碼行數:23,代碼來源:datasets.py

示例3: _instance_process

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def _instance_process(self, img, params):
        if params is None:
            img.img = img.img.resize((self.width, self.height), self.interpolation)

            if img.x is not None:
                img.x = img.x.resize((self.width, self.height), self.interpolation)
            if img.y is not None:
                img.y = img.y.resize((self.width, self.height), self.interpolation)

        else:
            new_width, new_height, x1, y1 = params
            img.img = img.img.resize((new_width, new_height), self.interpolation)
            img.img = img.img.crop((x1, y1, x1 + self.width, y1 + self.height))

            if img.x is not None:
                img.x = img.x.resize((new_width, new_height), self.interpolation)
                img.x = img.x.crop((x1, y1, x1 + self.width, y1 + self.height))

            if img.y is not None:
                img.y = img.y.resize((new_width, new_height), self.interpolation)
                img.y = img.y.crop((x1, y1, x1 + self.width, y1 + self.height))

        return img 
開發者ID:yolomax,項目名稱:person-reid-lib,代碼行數:25,代碼來源:transforms.py

示例4: __call__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize(
                (tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)
                        ), mask.crop((x1, y1, x1 + tw, y1 + th)) 
開發者ID:maunzzz,項目名稱:cross-season-segmentation,代碼行數:20,代碼來源:joint_transforms.py

示例5: resized_crop

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def resized_crop(img, i, j, h, w, size, interpolation='BILINEAR'):
    """Crop the given CV Image and resize it to desired size. Notably used in RandomResizedCrop.

    Args:
        img (np.ndarray): Image to be cropped.
        i: Upper pixel coordinate.
        j: Left pixel coordinate.
        h: Height of the cropped image.
        w: Width of the cropped image.
        size (sequence or int): Desired output size. Same semantics as ``scale``.
        interpolation (str, optional): Desired interpolation. Default is
            ``BILINEAR``.
    Returns:
        np.ndarray: Cropped image.
    """
    assert _is_numpy_image(img), 'img should be CV Image'
    img = crop(img, i, j, h, w)
    img = resize(img, size, interpolation)
    return img 
開發者ID:YU-Zhiyang,項目名稱:opencv_transforms_torchvision,代碼行數:21,代碼來源:cvfunctional.py

示例6: cv_transform

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def cv_transform(img):
    # img = resize(img, size=(100, 300))
    # img = to_tensor(img)
    # img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
    # img = crop(img, -40, -20, 1000, 1000)
    # img = center_crop(img, (310, 300))
    # img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = hflip(img)
    # img = vflip(img)
    # tl, tr, bl, br, center = five_crop(img, 100)
    # img = adjust_brightness(img, 2.1)
    # img = adjust_contrast(img, 1.5)
    # img = adjust_saturation(img, 2.3)
    # img = adjust_hue(img, 0.5)
    # img = adjust_gamma(img, gamma=3, gain=0.1)
    # img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
    # img = to_grayscale(img, 3)
    # img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
    # img = gaussion_noise(img)
    # img = poisson_noise(img)
    img = salt_and_pepper(img)
    return to_tensor(img) 
開發者ID:YU-Zhiyang,項目名稱:opencv_transforms_torchvision,代碼行數:26,代碼來源:cvfunctional.py

示例7: pil_transform

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def pil_transform(img):
    # img = functional.resize(img, size=(100, 300))
    # img = functional.to_tensor(img)
    # img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
    # img = functional.crop(img, -40, -20, 1000, 1000)
    # img = functional.center_crop(img, (310, 300))
    # img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = functional.hflip(img)
    # img = functional.vflip(img)
    # tl, tr, bl, br, center = functional.five_crop(img, 100)
    # img = functional.adjust_brightness(img, 2.1)
    # img = functional.adjust_contrast(img, 1.5)
    # img = functional.adjust_saturation(img, 2.3)
    # img = functional.adjust_hue(img, 0.5)
    # img = functional.adjust_gamma(img, gamma=3, gain=0.1)
    # img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
    # img = functional.to_grayscale(img, 3)
    # img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))

    return functional.to_tensor(img) 
開發者ID:YU-Zhiyang,項目名稱:opencv_transforms_torchvision,代碼行數:24,代碼來源:cvfunctional.py

示例8: __call__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __call__(self, img_dict):
        
        if np.random.rand() < self.p:
            data_get_func = img_dict['meta']['get_item_func']
            curr_idx = img_dict['meta']['idx']
            max_idx = img_dict['meta']['max_idx']

            other_idx = np.random.randint(0, max_idx)
            data4augm = data_get_func(other_idx)
            while (curr_idx == other_idx) or (self.same_label and data4augm['label'] != img_dict['label']):
                other_idx = np.random.randint(0, max_idx)
                data4augm = data_get_func(other_idx)

            alpha = np.random.rand()

            keys = ['rgb', 'depth', 'ir']
            for key in keys:
                img_dict[key] = Image.blend(data4augm[key].resize(img_dict[key].size),
                                            img_dict[key],
                                            alpha=alpha)
            if not self.same_label:
                img_dict['label'] = alpha * img_dict['label'] + (1 - alpha) * data4augm['label']
    
        return img_dict 
開發者ID:AlexanderParkin,項目名稱:ChaLearn_liveness_challenge,代碼行數:26,代碼來源:transforms.py

示例9: __getitem__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __getitem__(self, index):
        # Apply transforms to the image.
        image = torch.FloatTensor(self.nc,self.out_img_size, self.out_img_size).fill_(-1.)
        # Get the individual images.
        randbox = random.randrange(len(self.metadata['images'][index]))
        imglabel = np.zeros(10, dtype=np.int)
        boxlabel = np.zeros(10, dtype=np.int)
        for i,bb in enumerate(self.metadata['images'][index]):
            imid = random.randrange(self.num_data)
            bbox = [int(bc*self.out_img_size) for bc in bb]
            img, label = self.dataset[imid]
            scImg = FN.resize(img,(bbox[3],bbox[2]))
            image[:, bbox[1]:bbox[1]+bbox[3], bbox[0]:bbox[0]+bbox[2]] = FN.normalize(FN.to_tensor(scImg), mean=(0.5,)*self.nc, std=(0.5,)*self.nc)
            #imglabel[label] = 1
            if i == randbox:
                outBox = FN.normalize(FN.to_tensor(FN.resize(scImg, (self.bbox_out_size, self.bbox_out_size))), mean=(0.5,)*self.nc, std=(0.5,)*self.nc)
                mask = torch.zeros(1,self.out_img_size,self.out_img_size)
                mask[0,bbox[1]:bbox[1]+bbox[3],bbox[0]:bbox[0]+bbox[2]] = 1.
                outbbox = bbox
                #boxlabel[label]=1

        #return image[[0,0,0],::], torch.FloatTensor([1]), outBox[[0,0,0],::], torch.FloatTensor([1]), mask, torch.IntTensor(outbbox)
        return image, torch.FloatTensor([1]), outBox, torch.FloatTensor([1]), mask, torch.IntTensor(outbbox) 
開發者ID:rakshithShetty,項目名稱:adversarial-object-removal,代碼行數:25,代碼來源:data_loader_stargan.py

示例10: __call__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __call__(self, image, target):
        size = self.get_size(image.size)
        image = F.resize(image, size)
        target = target.resize(image.size)
        return image, target 
開發者ID:Res2Net,項目名稱:Res2Net-maskrcnn,代碼行數:7,代碼來源:transforms.py

示例11: __call__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __call__(self, image, target):
        if -1 not in self.force_test_scale:
            size = tuple(force_test_scale)
        else:
            size = self.get_size(image.size)
            if self.preprocess_type == "random_crop":
                size = self.reset_size(image.size, size)
        image = F.resize(image, size)
        target = target.resize(image.size)
        return image, target 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:12,代碼來源:transforms.py

示例12: resize_image

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def resize_image(image, desired_width=768, desired_height=384, random_pad=False):
    """Resizes an image keeping the aspect ratio mostly unchanged.

    Returns:
    image: the resized image
    window: (x1, y1, x2, y2). If max_dim is provided, padding might
        be inserted in the returned image. If so, this window is the
        coordinates of the image part of the full image (excluding
        the padding). The x2, y2 pixels are not included.
    scale: The scale factor used to resize the image
    padding: Padding added to the image [left, top, right, bottom]
    """
    # Default window (x1, y1, x2, y2) and default scale == 1.
    w, h = image.size

    width_scale = desired_width / w
    height_scale = desired_height / h
    scale = min(width_scale, height_scale)

    # Resize image using bilinear interpolation
    if scale != 1:
        image = functional.resize(image, (round(h * scale), round(w * scale)))
    w, h = image.size
    y_pad = desired_height - h
    x_pad = desired_width - w
    top_pad = random.randint(0, y_pad) if random_pad else y_pad // 2
    left_pad = random.randint(0, x_pad) if random_pad else x_pad // 2

    padding = (left_pad, top_pad, x_pad - left_pad, y_pad - top_pad)
    assert all([x >= 0 for x in padding])
    image = functional.pad(image, padding)
    window = [left_pad, top_pad, w + left_pad, h + top_pad]

    return image, window, scale, padding 
開發者ID:yuweijiang,項目名稱:HGL-pytorch,代碼行數:36,代碼來源:box_utils.py

示例13: __call__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __call__(self, image, target):
        image = F.resize(image, self.resize_shape)
        target = F.resize(
            target, self.resize_shape, interpolation=Image.NEAREST
        )
        return image, target 
開發者ID:paperswithcode,項目名稱:torchbench,代碼行數:8,代碼來源:transforms.py

示例14: __call__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __call__(self, image, target):
        image = F.resize(image, self.resize_shape)
        return image, target 
開發者ID:paperswithcode,項目名稱:torchbench,代碼行數:5,代碼來源:transforms.py

示例15: __call__

# 需要導入模塊: from torchvision.transforms import functional [as 別名]
# 或者: from torchvision.transforms.functional import resize [as 別名]
def __call__(self, image, target=None):
        size = self.get_size(image.size)
        image = F.resize(image, size)
        if target is None:
            return image
        target = target.resize(image.size)
        return image, target 
開發者ID:simaiden,項目名稱:Clothing-Detection,代碼行數:9,代碼來源:transforms.py


注:本文中的torchvision.transforms.functional.resize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。