本文整理匯總了Python中torchvision.transforms.ToPILImage方法的典型用法代碼示例。如果您正苦於以下問題:Python transforms.ToPILImage方法的具體用法?Python transforms.ToPILImage怎麽用?Python transforms.ToPILImage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torchvision.transforms
的用法示例。
在下文中一共展示了transforms.ToPILImage方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: regenerate_cache
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def regenerate_cache(self):
"""
Resamples the big matrix and resets the counter of the total
number of elements in the returned masks.
"""
low_size = int(self.resolution * self.max_size)
low_pattern = self.rng.uniform(0, 1, size=(low_size, low_size)) * 255
low_pattern = torch.from_numpy(low_pattern.astype('float32'))
pattern = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(self.max_size, Image.BICUBIC),
transforms.ToTensor(),
])(low_pattern[None])[0]
pattern = torch.lt(pattern, self.density).byte()
self.pattern = pattern.byte()
self.points_used = 0
示例2: visualize_output
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def visualize_output(img, output, templates, proc, prob_thresh=0.55, nms_thresh=0.1):
tensor_to_image = transforms.ToPILImage()
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
for t, m, s in zip(img[0], mean, std):
t.mul_(s).add_(m)
image = tensor_to_image(img[0]) # Index into the batch
cls_map = nnfunc.sigmoid(output[:, 0:templates.shape[0], :, :]).data.cpu(
).numpy().transpose((0, 2, 3, 1))[0, :, :, :]
reg_map = output[:, templates.shape[0]:, :, :].data.cpu(
).numpy().transpose((0, 2, 3, 1))[0, :, :, :]
print(np.sort(np.unique(cls_map))[::-1])
proc.visualize_heatmaps(image, cls_map, reg_map, templates,
prob_thresh=prob_thresh, nms_thresh=nms_thresh)
p = input("Continue? [Yn]")
if p.lower().strip() == 'n':
exit(0)
示例3: __getitem__
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def __getitem__(self, index):
outputs = []
for i, d in enumerate(self.datasets):
outputs += d.get_item(self.indices[i][index], self.flips[i][index])
self.counter += 1
# Shuffle datasets after each epoch
if self.counter == len(self):
if self.phase == 'train': self.shuffle()
self.counter = 0
if len(outputs) == 1 and self.aligned:
# Super resolution
outputs[0] = ToPILImage()((outputs[0] + 1) / 2)
outputs.insert(0, self.down(outputs[0]))
for i, o in enumerate(outputs):
outputs[i] = ToTensor()(o) * 2 - 1
return outputs
示例4: test
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def test(model, img, sr_factor):
model.eval()
img = img.resize((int(img.size[0]*sr_factor), \
int(img.size[1]*sr_factor)), resample=PIL.Image.BICUBIC)
img.save('low_res.png')
img = transforms.ToTensor()(img)
img = torch.unsqueeze(img, 0)
input = Variable(img.cuda())
residual = model(input)
output = input + residual
output = output.cpu().data[0, :, :, :]
o = output.numpy()
o[np.where(o < 0)] = 0.0
o[np.where(o > 1)] = 1.0
output = torch.from_numpy(o)
output = transforms.ToPILImage()(output)
output.save('zssr.png')
示例5: get_imgs
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def get_imgs(img_path, imsize, bbox=None,
transform=None, normalize=None):
img = Image.open(img_path).convert('RGB')
if transform is not None:
img = transform(img)
img, bbox_scaled = crop_imgs(img, bbox)
ret = []
if cfg.GAN.B_DCGAN:
ret = [normalize(img)]
else:
for i in range(cfg.TREE.BRANCH_NUM):
# print(imsize[i])
if i < (cfg.TREE.BRANCH_NUM - 1):
re_img = transforms.ToPILImage()(img)
re_img = transforms.Resize((imsize[i], imsize[i]))(re_img)
else:
re_img = transforms.ToPILImage()(img)
ret.append(normalize(re_img))
return ret, bbox_scaled
示例6: image
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def image(self, img_tensors: torch.Tensor, global_step: int, tag: str = "Train/input",
grid_size: Union[list, tuple] = (3, 1), shuffle=True, save_file=False):
if len(img_tensors.size()) != 4:
raise TypeError("img_tensors rank should be 4, got %d instead" % len(img_tensors.size()))
self._build_dir(os.path.join(self.logdir, "plots", tag))
rows, columns = grid_size[0], grid_size[1]
batch_size = len(img_tensors) # img_tensors =>(batchsize, 3, 256, 256)
num_samples: int = min(batch_size, rows * columns)
sampled_tensor = self._sample(img_tensors, num_samples, shuffle).detach().cpu()
# (sample_num, 3, 32,32) tensors
# sampled_images = map(transforms.Normalize(mean, std), sampled_tensor) # (sample_num, 3, 32,32) images
sampled_images: torch.Tensor = make_grid(sampled_tensor, nrow=rows, normalize=True, scale_each=True)
self.writer.add_image(tag, sampled_images, global_step)
if save_file:
img = transforms.ToPILImage()(sampled_images)
filename = "%s/plots/%s/E%03d.png" % (self.logdir, tag, global_step)
img.save(filename)
示例7: test_segmentation_pipeline
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def test_segmentation_pipeline(self):
class DrawSquare:
def __init__(self, side):
self.side = side
def __call__(self, x, **kwargs):
x, canvas = x # x is a [int, ndarray]
canvas[:self.side, :self.side] = x
return canvas
target_trans = BaaLCompose(
[GetCanvas(), DrawSquare(3), ToPILImage(mode=None), Resize(60, interpolation=0),
RandomRotation(10, resample=NEAREST, fill=0.0), PILToLongTensor()])
file_dataset = FileDataset(self.paths, [1] * len(self.paths), self.transform, target_trans)
x, y = file_dataset[0]
assert np.allclose(np.unique(y), [0, 1])
assert y.shape[1:] == x.shape[1:]
示例8: __init__
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def __init__(self, model, loss, resume, config, train_loader, val_loader=None, train_logger=None, prefetch=True):
super(Trainer, self).__init__(model, loss, resume, config, train_loader, val_loader, train_logger)
self.wrt_mode, self.wrt_step = 'train_', 0
self.log_step = config['trainer'].get('log_per_iter', int(np.sqrt(self.train_loader.batch_size)))
if config['trainer']['log_per_iter']: self.log_step = int(self.log_step / self.train_loader.batch_size) + 1
self.num_classes = self.train_loader.dataset.num_classes
# TRANSORMS FOR VISUALIZATION
self.restore_transform = transforms.Compose([
local_transforms.DeNormalize(self.train_loader.MEAN, self.train_loader.STD),
transforms.ToPILImage()])
self.viz_transform = transforms.Compose([
transforms.Resize((400, 400)),
transforms.ToTensor()])
if self.device == torch.device('cpu'): prefetch = False
if prefetch:
self.train_loader = DataPrefetcher(train_loader, device=self.device)
self.val_loader = DataPrefetcher(val_loader, device=self.device)
torch.backends.cudnn.benchmark = True
示例9: im_show
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def im_show(img_list):
"""
It receives a list of images and plots them together
:param img_list:
:return:
"""
to_PIL = transforms.ToPILImage()
if len(img_list) >= 10:
raise Exception("len(img_list) must be smaller than 10")
for idx, img in enumerate(img_list):
img = np.array(to_PIL(img))
plt.subplot(100 + 10 * len(img_list) + (idx + 1))
fig = plt.imshow(img)
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.show()
示例10: get_imgs
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def get_imgs(img_path, imsize, max_objects, bbox=None, transform=None, normalize=None):
img = Image.open(img_path).convert('RGB')
if transform is not None:
img = transform(img)
img, bbox_scaled = crop_imgs(img, bbox, max_objects=max_objects)
ret = []
if cfg.GAN.B_DCGAN:
ret = [normalize(img)]
else:
for i in range(cfg.TREE.BRANCH_NUM):
# print(imsize[i])
if i < (cfg.TREE.BRANCH_NUM - 1):
re_img = transforms.ToPILImage()(img)
re_img = transforms.Resize((imsize[i], imsize[i]))(re_img)
else:
re_img = transforms.ToPILImage()(img)
ret.append(normalize(re_img))
return ret, bbox_scaled
開發者ID:tohinz,項目名稱:semantic-object-accuracy-for-generative-text-to-image-synthesis,代碼行數:23,代碼來源:datasets.py
示例11: get_dataloader
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def get_dataloader(batch_size, root="data/cifar10"):
root = Path(root).expanduser()
if not root.exists():
root.mkdir()
root = str(root)
to_normalized_tensor = [transforms.ToTensor(),
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]
data_augmentation = [transforms.RandomHorizontalFlip(),]
train_loader = DataLoader(
datasets.CIFAR10(root, train=True, download=True,
transform=transforms.Compose(data_augmentation + to_normalized_tensor)),
batch_size=batch_size, shuffle=True)
test_loader = DataLoader(
datasets.CIFAR10(root, train=False, transform=transforms.Compose(to_normalized_tensor)),
batch_size=batch_size, shuffle=True)
return train_loader, test_loader
示例12: feed_interpolated_input
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def feed_interpolated_input(self, x):
if self.phase == 'gtrns' and floor(self.resl)>2 and floor(self.resl)<=self.max_resl:
alpha = self.complete['gen']/100.0
transform = transforms.Compose( [ transforms.ToPILImage(),
transforms.Scale(size=int(pow(2,floor(self.resl)-1)), interpolation=0), # 0: nearest
transforms.Scale(size=int(pow(2,floor(self.resl))), interpolation=0), # 0: nearest
transforms.ToTensor(),
] )
x_low = x.clone().add(1).mul(0.5)
for i in range(x_low.size(0)):
x_low[i] = transform(x_low[i]).mul(2).add(-1)
x = torch.add(x.mul(alpha), x_low.mul(1-alpha)) # interpolated_x
if self.use_cuda:
return x.cuda()
else:
return x
示例13: build_transform
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def build_transform(self):
"""
Creates a basic transformation that was used to train the models
"""
cfg = self.cfg
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
transform = T.Compose(
[
T.ToPILImage(),
T.Resize(self.min_image_size),
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
示例14: add_to_confMatrix
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def add_to_confMatrix(prediction, groundtruth, confMatrix, perImageStats, nbPixels):
if isinstance(prediction, list): #merge multi-gpu tensors
outputs_cpu = prediction[0].cpu()
for i in range(1,len(outputs)):
outputs_cpu = torch.cat((outputs_cpu, prediction[i].cpu()), 0)
else:
outputs_cpu = prediction.cpu()
for i in range(0, outputs_cpu.size(0)): #args.batch_size,evaluate iou of each batch
prediction = ToPILImage()(outputs_cpu[i].max(0)[1].data.unsqueeze(0).byte())
groundtruth_image = ToPILImage()(groundtruth[i].cpu().byte())
nbPixels += evalIoU.evaluatePairPytorch(prediction, groundtruth_image, confMatrix, perImageStats, evalIoU.args)
示例15: img2label
# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import ToPILImage [as 別名]
def img2label(img,label,count):
count+=1
img = np.array(img)
label = np.array(label)
for i in range(label.shape[0]):
for j in range(label.shape[1]):
if label[i,j]==0:
img[i,j,:]=0
image = ToPILImage()(img)
image.save('./results/imglabel_'+str(count)+'.jpg')