當前位置: 首頁>>代碼示例>>Python>>正文


Python transforms.RandomGrayscale方法代碼示例

本文整理匯總了Python中torchvision.transforms.RandomGrayscale方法的典型用法代碼示例。如果您正苦於以下問題:Python transforms.RandomGrayscale方法的具體用法?Python transforms.RandomGrayscale怎麽用?Python transforms.RandomGrayscale使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.transforms的用法示例。


在下文中一共展示了transforms.RandomGrayscale方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_jig_train_transformers

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomGrayscale [as 別名]
def get_jig_train_transformers(args):
    size = args.img_transform.random_resize_crop.size
    scale = args.img_transform.random_resize_crop.scale
    img_tr = [transforms.RandomResizedCrop((int(size[0]), int(size[1])), (scale[0], scale[1]))]
    if args.img_transform.random_horiz_flip > 0.0:
        img_tr.append(transforms.RandomHorizontalFlip(args.img_transform.random_horiz_flip))
    if args.img_transform.jitter > 0.0:
        img_tr.append(transforms.ColorJitter(
            brightness=args.img_transform.jitter, contrast=args.img_transform.jitter,
            saturation=args.jitter, hue=min(0.5, args.jitter)))

    tile_tr = []
    if args.jig_transform.tile_random_grayscale:
        tile_tr.append(transforms.RandomGrayscale(args.jig_transform.tile_random_grayscale))
    mean = args.normalize.mean
    std = args.normalize.std
    tile_tr = tile_tr + [transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]

    return transforms.Compose(img_tr), transforms.Compose(tile_tr) 
開發者ID:Jiaolong,項目名稱:self-supervised-da,代碼行數:21,代碼來源:data_loader.py

示例2: __init__

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomGrayscale [as 別名]
def __init__(self):
        # flipping image along vertical axis
        self.flip_lr = transforms.RandomHorizontalFlip(p=0.5)
        # image augmentation functions
        normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
                                         std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
        col_jitter = transforms.RandomApply([
            transforms.ColorJitter(0.4, 0.4, 0.4, 0.2)], p=0.8)
        img_jitter = transforms.RandomApply([
            RandomTranslateWithReflect(4)], p=0.8)
        rnd_gray = transforms.RandomGrayscale(p=0.25)
        # main transform for self-supervised training
        self.train_transform = transforms.Compose([
            img_jitter,
            col_jitter,
            rnd_gray,
            transforms.ToTensor(),
            normalize
        ])
        # transform for testing
        self.test_transform = transforms.Compose([
            transforms.ToTensor(),
            normalize
        ]) 
開發者ID:Philip-Bachman,項目名稱:amdim-public,代碼行數:26,代碼來源:datasets.py

示例3: image_random_grayscaler

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomGrayscale [as 別名]
def image_random_grayscaler(p=0.5):
        return transforms.RandomGrayscale(p=p) 
開發者ID:Wizaron,項目名稱:instance-segmentation-pytorch,代碼行數:4,代碼來源:utils.py

示例4: get_train_transformers

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomGrayscale [as 別名]
def get_train_transformers(args):
    img_tr = [transforms.RandomResizedCrop((int(args.image_size), int(args.image_size)), (args.min_scale, args.max_scale))]
    if args.random_horiz_flip > 0.0:
        img_tr.append(transforms.RandomHorizontalFlip(args.random_horiz_flip))
    if args.jitter > 0.0:
        img_tr.append(transforms.ColorJitter(brightness=args.jitter, contrast=args.jitter, saturation=args.jitter, hue=min(0.5, args.jitter)))

    tile_tr = []
    if args.tile_random_grayscale:
        tile_tr.append(transforms.RandomGrayscale(args.tile_random_grayscale))
    tile_tr = tile_tr + [transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]

    return transforms.Compose(img_tr), transforms.Compose(tile_tr) 
開發者ID:fmcarlucci,項目名稱:JigenDG,代碼行數:15,代碼來源:data_helper.py


注:本文中的torchvision.transforms.RandomGrayscale方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。