當前位置: 首頁>>代碼示例>>Python>>正文


Python transforms.RandomAffine方法代碼示例

本文整理匯總了Python中torchvision.transforms.RandomAffine方法的典型用法代碼示例。如果您正苦於以下問題:Python transforms.RandomAffine方法的具體用法?Python transforms.RandomAffine怎麽用?Python transforms.RandomAffine使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.transforms的用法示例。


在下文中一共展示了transforms.RandomAffine方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def __init__(self,
                 dataroot: Path,
                 scale_factor: int = 4):

        super(CUFED5Dataset, self).__init__()

        self.dataroot = Path(dataroot)
        self.filenames = list(set(
            [f.stem.split('_')[0] for f in self.dataroot.glob('*.png')]
        ))

        self.transforms = transforms.Compose([
            transforms.ToTensor(),
            # transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])
        self.warp = transforms.RandomAffine(
            degrees=(10, 30),
            translate=(0.25, 0.5),
            scale=(1.2, 2.0),
            resample=Image.BICUBIC
        ) 
開發者ID:S-aiueo32,項目名稱:srntt-pytorch,代碼行數:23,代碼來源:cufed5_dataset.py

示例2: get_transforms

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def get_transforms():
    pre_trained_mean, pre_trained_std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
    
    train_transforms = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomAffine(degrees=40, scale=(.9, 1.1), shear=0),
        transforms.RandomPerspective(distortion_scale=0.2),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.ToTensor(),
        transforms.RandomErasing(scale=(0.02, 0.16), ratio=(0.3, 1.6)),
        transforms.Normalize(mean=pre_trained_mean, std=pre_trained_std),
    ])
    
    val_transforms = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=pre_trained_mean, std=pre_trained_std)
    ])
    return train_transforms, val_transforms 
開發者ID:dessa-oss,項目名稱:DeepFake-Detection,代碼行數:20,代碼來源:data_loader.py

示例3: __call__

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def __call__(self, image, mask):
        # transforming to PIL image
        image, mask = F.to_pil_image(image), F.to_pil_image(mask)

        # random crop
        if self.crop:
            i, j, h, w = T.RandomCrop.get_params(image, self.crop)
            image, mask = F.crop(image, i, j, h, w), F.crop(mask, i, j, h, w)

        if np.random.rand() < self.p_flip:
            image, mask = F.hflip(image), F.hflip(mask)

        # color transforms || ONLY ON IMAGE
        if self.color_jitter_params:
            image = self.color_tf(image)

        # random affine transform
        if np.random.rand() < self.p_random_affine:
            affine_params = T.RandomAffine(180).get_params((-90, 90), (1, 1), (2, 2), (-45, 45), self.crop)
            image, mask = F.affine(image, *affine_params), F.affine(mask, *affine_params)

        # transforming to tensor
        image = F.to_tensor(image)
        if not self.long_mask:
            mask = F.to_tensor(mask)
        else:
            mask = to_long_tensor(mask)

        return image, mask 
開發者ID:cosmic-cortex,項目名稱:pytorch-UNet,代碼行數:31,代碼來源:dataset.py

示例4: data_transforms

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def data_transforms(dataset, cutout_length):
    dataset = dataset.lower()
    if dataset == 'cifar10':
        MEAN = [0.49139968, 0.48215827, 0.44653124]
        STD = [0.24703233, 0.24348505, 0.26158768]
        transf = [
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip()
        ]
    elif dataset == 'mnist':
        MEAN = [0.13066051707548254]
        STD = [0.30810780244715075]
        transf = [
            transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1)
        ]
    elif dataset == 'fashionmnist':
        MEAN = [0.28604063146254594]
        STD = [0.35302426207299326]
        transf = [
            transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1),
            transforms.RandomVerticalFlip()
        ]
    else:
        raise ValueError('not expected dataset = {}'.format(dataset))

    normalize = [
        transforms.ToTensor(),
        transforms.Normalize(MEAN, STD)
    ]

    train_transform = transforms.Compose(transf + normalize)
    valid_transform = transforms.Compose(normalize)

    if cutout_length > 0:
        train_transform.transforms.append(Cutout(cutout_length))

    return train_transform, valid_transform 
開發者ID:khanrc,項目名稱:pt.darts,代碼行數:39,代碼來源:preproc.py

示例5: main

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=14, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')

    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=True, download=True,
                       transform=transforms.Compose([
                           # Add random transformations to the image.
                           transforms.RandomAffine(
                               degrees=30, translate=(0.5, 0.5), scale=(0.25, 1),
                               shear=(-30, 30, -30, 30)),

                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=False, transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(args, model, device, test_loader)
        scheduler.step()

    torch.save(model.state_dict(), "pytorch_model.pt") 
開發者ID:elliotwaite,項目名稱:pytorch-to-javascript-with-onnx-js,代碼行數:61,代碼來源:train_mnist_model.py

示例6: __init__

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def __init__(self, model=None, defense_name=None, dataset=None, temperature=1, training_parameters=None, device=None):
        """

        :param model:
        :param defense_name:
        :param dataset:
        :param temperature:
        :param training_parameters:
        :param device:
        """
        super(DistillationDefense, self).__init__(model=model, defense_name=defense_name)
        self.model = model
        self.defense_name = defense_name
        self.device = device

        self.Dataset = dataset.upper()
        assert self.Dataset in ['MNIST', 'CIFAR10'], "The data set must be MNIST or CIFAR10"

        # prepare the models for the defenses
        self.initial_model = copy.deepcopy(model)
        self.best_initial_model = copy.deepcopy(model)
        self.distilled_model = copy.deepcopy(model)

        # parameters for the defense
        self.temperature = temperature * 1.0

        # get the training_parameters, the same as the settings of RawModels
        self.num_epochs = training_parameters['num_epochs']
        self.batch_size = training_parameters['batch_size']

        # prepare the optimizers and transforms
        if self.Dataset == 'MNIST':
            self.initial_optimizer = optim.SGD(self.initial_model.parameters(), lr=training_parameters['learning_rate'],
                                               momentum=training_parameters['momentum'], weight_decay=training_parameters['decay'],
                                               nesterov=True)
            self.distilled_optimizer = optim.SGD(self.distilled_model.parameters(), lr=training_parameters['learning_rate'],
                                                 momentum=training_parameters['momentum'], weight_decay=training_parameters['decay'],
                                                 nesterov=True)
            self.transform = None
        else:
            self.initial_optimizer = optim.Adam(self.initial_model.parameters(), lr=training_parameters['lr'])
            self.distilled_optimizer = optim.Adam(self.distilled_model.parameters(), lr=training_parameters['lr'])
            self.transform = Compose([RandomAffine(degrees=0, translate=(0.1, 0.1)), RandomHorizontalFlip(), ToTensor()]) 
開發者ID:kleincup,項目名稱:DEEPSEC,代碼行數:45,代碼來源:DD.py

示例7: get_cifar10_train_validate_loader

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def get_cifar10_train_validate_loader(dir_name, batch_size, valid_size=0.1, augment=True, shuffle=True, random_seed=100, num_workers=1):
    """

    :param dir_name:
    :param batch_size:
    :param valid_size:
    :param augment:
    :param shuffle:
    :param random_seed:
    :param num_workers:
    :return:
    """
    # training dataset's transform
    if augment is True:
        train_transform = transforms.Compose([
            # transforms.RandomCrop(32),
            # transforms.RandomCrop(32, padding=4),
            transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor()
        ])
    else:
        train_transform = transforms.Compose([transforms.ToTensor()])

    # validation dataset's transform
    valid_transform = transforms.Compose([transforms.ToTensor()])

    # load the dataset
    train_cifar10_dataset = torchvision.datasets.CIFAR10(root=dir_name, train=True, download=True, transform=train_transform)
    valid_cifar10_dataset = torchvision.datasets.CIFAR10(root=dir_name, train=True, download=True, transform=valid_transform)

    num_train = len(train_cifar10_dataset)
    indices = list(range(num_train))

    split = int(np.floor(valid_size * num_train))

    if shuffle is True:
        np.random.seed(random_seed)
        np.random.shuffle(indices)

    train_idx, valid_idx = indices[split:], indices[:split]

    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)

    train_loader = torch.utils.data.DataLoader(train_cifar10_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers)
    valid_loader = torch.utils.data.DataLoader(valid_cifar10_dataset, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers)

    return train_loader, valid_loader 
開發者ID:kleincup,項目名稱:DEEPSEC,代碼行數:51,代碼來源:dataset.py

示例8: data_transforms

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def data_transforms(dataset, cutout_length):
    dataset = dataset.lower()
    if dataset == 'cifar10' or dataset == 'cifar100':
        MEAN = [0.49139968, 0.48215827, 0.44653124]
        STD = [0.24703233, 0.24348505, 0.26158768]
        transf_train = [
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip()
        ]
        transf_val = []
    elif dataset == 'mnist':
        MEAN = [0.13066051707548254]
        STD = [0.30810780244715075]
        transf_train = [
            transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1)
        ]
        transf_val=[]
    elif dataset == 'fashionmnist':
        MEAN = [0.28604063146254594]
        STD = [0.35302426207299326]
        transf_train = [
            transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1),
            transforms.RandomVerticalFlip()
        ]
        transf_val = []
    #Same preprocessing for ImageNet, Sport8 and MIT67
    elif dataset in utils.LARGE_DATASETS:
        MEAN = [0.485, 0.456, 0.406]
        STD = [0.229, 0.224, 0.225]
        transf_train = [
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ColorJitter(
                brightness=0.4,
                contrast=0.4,
                saturation=0.4,
                hue=0.2)
        ]
        transf_val = [
            transforms.Resize(256),
            transforms.CenterCrop(224),
        ]
    else:
        raise ValueError('not expected dataset = {}'.format(dataset))

    normalize = [
        transforms.ToTensor(),
        transforms.Normalize(MEAN, STD)
    ]
    
    train_transform = transforms.Compose(transf_train + normalize)
    valid_transform = transforms.Compose(transf_val + normalize)  # FIXME validation is not set to square proportions, is this an issue?

    if cutout_length > 0:
        train_transform.transforms.append(Cutout(cutout_length))

    return train_transform, valid_transform 
開發者ID:antoyang,項目名稱:NAS-Benchmark,代碼行數:59,代碼來源:preproc.py

示例9: load_cifar10

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def load_cifar10(args, **kwargs):
    # set args
    args.input_size = [3, 32, 32]
    args.input_type = 'continuous'
    args.dynamic_binarization = False

    from keras.datasets import cifar10
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()

    x_train = x_train.transpose(0, 3, 1, 2)
    x_test = x_test.transpose(0, 3, 1, 2)

    import math

    if args.data_augmentation_level == 2:
        data_transform = transforms.Compose([
                transforms.ToPILImage(),
                transforms.RandomHorizontalFlip(),
                transforms.Pad(int(math.ceil(32 * 0.05)), padding_mode='edge'),
                transforms.RandomAffine(degrees=0, translate=(0.05, 0.05)),
                transforms.CenterCrop(32)
            ])
    elif args.data_augmentation_level == 1:
        data_transform = transforms.Compose([
                transforms.ToPILImage(),
                transforms.RandomHorizontalFlip(),
            ])
    else:
        data_transform = transforms.Compose([
                transforms.ToPILImage(),
            ])

    x_val = x_train[-10000:]
    y_val = y_train[-10000:]

    x_train = x_train[:-10000]
    y_train = y_train[:-10000]

    train = CustomTensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train), transform=data_transform)
    train_loader = data_utils.DataLoader(train, batch_size=args.batch_size, shuffle=True, **kwargs)

    validation = data_utils.TensorDataset(torch.from_numpy(x_val), torch.from_numpy(y_val))
    val_loader = data_utils.DataLoader(validation, batch_size=args.batch_size, shuffle=False, **kwargs)

    test = data_utils.TensorDataset(torch.from_numpy(x_test), torch.from_numpy(y_test))
    test_loader = data_utils.DataLoader(test, batch_size=args.batch_size, shuffle=False, **kwargs)

    return train_loader, val_loader, test_loader, args 
開發者ID:jornpeters,項目名稱:integer_discrete_flows,代碼行數:50,代碼來源:load_data.py

示例10: loadDataset

# 需要導入模塊: from torchvision import transforms [as 別名]
# 或者: from torchvision.transforms import RandomAffine [as 別名]
def loadDataset(dataset, batch_size, train, transform = True):
    oargs = {}
    if dataset in ["MNIST", "CIFAR10", "CIFAR100", "FashionMNIST", "PhotoTour"]:
        oargs['train'] = train
    elif dataset in ["STL10", "SVHN"] :
        oargs['split'] = 'train' if train else 'test'
    elif dataset in ["LSUN"]:
        oargs['classes'] = 'train' if train else 'test'
    elif dataset in ["Imagenet12"]:
        pass
    else:
        raise Exception(dataset + " is not yet supported")

    if dataset in ["MNIST"]:
        transformer = transforms.Compose([ transforms.ToTensor()]
                                         + ([transforms.Normalize((0.1307,), (0.3081,))] if transform else []))
    elif dataset in ["CIFAR10", "CIFAR100"]:
        transformer = transforms.Compose(([ #transforms.RandomCrop(32, padding=4), 
                                            transforms.RandomAffine(0, (0.125, 0.125), resample=PIL.Image.BICUBIC) ,
                                            transforms.RandomHorizontalFlip(), 
                                            #transforms.RandomRotation(15, resample = PIL.Image.BILINEAR) 
                                          ] if train else [])
                                         + [transforms.ToTensor()] 
                                         + ([transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))] if transform else []))
    elif dataset in ["SVHN"]:
        transformer = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5), (0.2,0.2,0.2))])
    else:
        transformer = transforms.ToTensor()

    if dataset in ["Imagenet12"]:
        # https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset
        train_set = datasets.ImageFolder(
            '../data/Imagenet12/train' if train else '../data/Imagenet12/val',
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                normalize,
            ]))
    else:
        train_set = getattr(datasets, dataset)('../data', download=True, transform=transformer, **oargs)
    return torch.utils.data.DataLoader(
        train_set
        , batch_size=batch_size
        , shuffle=True, 
        **({'num_workers': 1, 'pin_memory': True} if use_cuda else {})) 
開發者ID:eth-sri,項目名稱:diffai,代碼行數:50,代碼來源:helpers.py


注:本文中的torchvision.transforms.RandomAffine方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。