當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.roi_align方法代碼示例

本文整理匯總了Python中torchvision.ops.roi_align方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.roi_align方法的具體用法?Python ops.roi_align怎麽用?Python ops.roi_align使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torchvision.ops的用法示例。


在下文中一共展示了ops.roi_align方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from torchvision import ops [as 別名]
# 或者: from torchvision.ops import roi_align [as 別名]
def forward(self, features, rois):
        """
        Args:
            features: NCHW images
            rois: Bx5 boxes. First column is the index into N. The other 4
            columns are xyxy.
        """
        assert rois.dim() == 2 and rois.size(1) == 5

        if self.use_torchvision:
            from torchvision.ops import roi_align as tv_roi_align
            return tv_roi_align(features, rois, self.out_size,
                                self.spatial_scale, self.sample_num)
        else:
            return roi_align(features, rois, self.out_size, self.spatial_scale,
                             self.sample_num, self.aligned) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:18,代碼來源:roi_align.py

示例2: forward

# 需要導入模塊: from torchvision import ops [as 別名]
# 或者: from torchvision.ops import roi_align [as 別名]
def forward(self, x):
        x, rois, sequences = x
        _, _, input_h, input_w = x.shape
        x_l1, x_l2 = self.base(x)
        dtype = x_l1.dtype
        rois = [roi.to(dtype) for roi in rois]
        del x
        x_l1 = roi_align(
            x_l1, rois,
            output_size=(self.res_l1, self.res_l1),
            spatial_scale=x_l1.shape[3] / input_w,
        )
        x_l2 = roi_align(
            x_l2, rois,
            output_size=(self.res_l2, self.res_l2),
            spatial_scale=x_l2.shape[3] / input_w,
        )
        x = torch.cat(
            [x_l1.flatten(start_dim=1),
             x_l2.flatten(start_dim=1)],
            dim=1)
        x, x_features = self.head(x)
        if self.use_sequences:  # unused
            x_features = self._apply_lstm(x_features, rois, sequences)
            x = self.head.apply_fc_out(x_features)
        return x, x_features, rois 
開發者ID:lopuhin,項目名稱:kaggle-kuzushiji-2019,代碼行數:28,代碼來源:models.py

示例3: get_yolo_feature_vec

# 需要導入模塊: from torchvision import ops [as 別名]
# 或者: from torchvision.ops import roi_align [as 別名]
def get_yolo_feature_vec(self, coords):
        feature_map = self.get_feature_map()
        ratio = self.img_size/feature_map.size()[2]
        #coords = (10,10,100,100)
        coords = torch.cat((torch.Tensor([0]),torch.Tensor(coords))).view(1,5).cuda()
        #coords = torch.Tensor(coords).view(1,4).cuda()
        #print(feature_map.shape)
        #print(coords.shape)
        #print(coords.shape)
        with torch.no_grad():
            roi = roi_align(  feature_map, coords,(3,3) , spatial_scale=1/ratio)
        #print(roi)
        vec = F.adaptive_avg_pool2d(roi, (1, 1))
        return np.squeeze(vec.cpu().detach().numpy()) 
開發者ID:simaiden,項目名稱:Clothing-Detection,代碼行數:16,代碼來源:models.py

示例4: project_masks_on_boxes

# 需要導入模塊: from torchvision import ops [as 別名]
# 或者: from torchvision.ops import roi_align [as 別名]
def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M):
    """
    Given segmentation masks and the bounding boxes corresponding
    to the location of the masks in the image, this function
    crops and resizes the masks in the position defined by the
    boxes. This prepares the masks for them to be fed to the
    loss computation as the targets.
    """
    matched_idxs = matched_idxs.to(boxes)
    rois = torch.cat([matched_idxs[:, None], boxes], dim=1)
    gt_masks = gt_masks[:, None].to(rois)
    return roi_align(gt_masks, rois, (M, M), 1)[:, 0] 
開發者ID:lopuhin,項目名稱:kaggle-kuzushiji-2019,代碼行數:14,代碼來源:roi_heads.py

示例5: forward

# 需要導入模塊: from torchvision import ops [as 別名]
# 或者: from torchvision.ops import roi_align [as 別名]
def forward(self, features, rois):
        if self.use_torchvision:
            from torchvision.ops import roi_align as tv_roi_align
            return tv_roi_align(features, rois, self.out_size,
                                self.spatial_scale, self.sample_num)
        else:
            return roi_align(features, rois, self.out_size, self.spatial_scale,
                             self.sample_num) 
開發者ID:xieenze,項目名稱:PolarMask,代碼行數:10,代碼來源:roi_align.py

示例6: forward

# 需要導入模塊: from torchvision import ops [as 別名]
# 或者: from torchvision.ops import roi_align [as 別名]
def forward(self, features, rois):
        if self.use_torchvision:
            from torchvision.ops import roi_align as tv_roi_align
            return tv_roi_align(features, rois, _pair(self.out_size),
                                self.spatial_scale, self.sample_num)
        else:
            return roi_align(features, rois, self.out_size, self.spatial_scale,
                             self.sample_num) 
開發者ID:lizhe960118,項目名稱:CenterNet,代碼行數:10,代碼來源:roi_align.py


注:本文中的torchvision.ops.roi_align方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。